• Title/Summary/Keyword: electrocatalysts stability

Search Result 25, Processing Time 0.027 seconds

Pt Electrocatalysts Composited on Electro-Spun Pt Nanowires for Direct Methanol Fuel Cells

  • An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.421-425
    • /
    • 2012
  • Two types of Pt nanoparticle electrocatalysts were composited on Pt nanowires by a combination of an electrospinning method and an impregnation method with NaBH4 as a reducing agent. The structural properties and electrocatalytic activities for methanol electro-oxidation in direct methanol fuel cells were investigated by means of scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. In particular, SEM, HRTEM, XRD, and XPS results indicate that the metallic Pt nanoparticles with polycrystalline property are uniformly decorated on the electro-spun Pt nanowires. In order to investigate the catalytic activity of the Pt nanoparticles decorated on the electro-spun Pt nanowires, two types of 20 wt% Pt nanoparticles and 40 wt% Pt nanoparticles decorated on the electro-spun Pt nanowires were fabricated. In addition, for comparison, single Pt nanowires were fabricated via an electrospinning method without an impregnation method. As a result, the cyclic voltammetry and chronoamperometry results demonstrate that the electrode containing 40 wt% Pt nanoparticles exhibits the best catalytic activity for methanol electro-oxidation and the highest electrochemical stability among the single Pt nanowires, the 20 wt% Pt nanoparticles decorated with Pt nanowires, and the 40 wt% Pt nanoparticles decorated with Pt nanowires studied for use in direct methanol fuel cells.

Electrocatalytic Reduction of CO2 by Copper (II) Cyclam Derivatives

  • Kang, Sung-Jin;Dale, Ajit;Sarkar, Swarbhanu;Yoo, Jeongsoo;Lee, Hochun
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.106-110
    • /
    • 2015
  • This study investigates Cu(II) complexes of cyclam, propylene cross-bridged cyclam (PCB-cyclam), and propylene cross-bridged cyclam diacetate (PCB-TE2A) as homogeneous electrocatalysts for CO2 reduction in comparison with Ni(II)-cyclam. It is found that Cu(II)-cyclam can catalyze CO2 reduction at the potential close to its thermodynamic value (0.75 V vs. Ag/AgCl) in tris-HCl buffer (pH 8.45) on a glassy carbon electrode. Cu(II)-cyclam, however, suffers from severe demetalation due to the insufficient stability of Cu(I)-cyclam. Cu(II)-PCB-cyclam and Cu(II)-PCB-TE2A are revealed to exhibit much less demetalation behavior, but poor CO2 reduction activities as well. The inferior electrocatalytic ability of Cu(II)-PCB-cyclam is ascribed to its redox potential that is too high for CO2 reduction, and that of Cu(II)-PCB-TE2A to the steric hindrance preventing facile contact with CO2 molecules. This study suggests that in addition to the redox potential and chemical stability, the stereochemical aspect has to be considered in designing efficient electrocatalysts for CO2 reduction.

Solar-hydrogen Production by a Monolithic Photovoltaic-electrolytic Cell

  • Jeon, Hyo Sang;Min, Byoung Koun
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.149-153
    • /
    • 2012
  • Among the various solar-hydrogen production techniques a combination of a photovoltaic (PV) and an electrolytic cell into one single system, a monolithic PV-electrolytic cell, has been suggested as a promising one in terms of efficiency and stability. In this mini-review, we describe our recent efforts on the fabrication of the monolithic PV-electrolytic cell. Particularly, we focus on the electrocatalysts for water oxidation and its fabrication method suitable for a monolithic PV-electrolytic cell. We also introduce proto-type devices with a dye-sensitized solar cell module and an InGaP/GaAs photoelectrodes.

Oxygen Evolution Reaction at Electrodes of Single Phase Ruthenium Oxides with Perovskite and Pyrochlore Structures$^{**}$

  • 최은옥;권영욱;모선일
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.972-976
    • /
    • 1997
  • Single phase ruthenium oxides with perovskite (ATi1-xRuxO3 (A=Ca, Sr)) and pyrochlore structure (Bi2Ru2O7, Pb2Ru2O6.5) have been prepared reproducibly by solid state reaction methods and their electrocatalytic activities for oxygen evolution have been examined by Tafel plots. Tafel slopes vary from a low value of 42 mV/decade up to 222 mV/decade at room temperature. The high exchange current densities and high Tafel slopes compared with those obtained from the RuO2 DSA electrode at the crystalline single phase metal oxide electrodes suggest that they are better electrocatalysts at low overpotentials. A favorable change in the Tafel slope for the oxygen evolution reaction occurs as the ruthenium content increases. Substitution of Ti for Ru in the perovskite solid solutions enhanced their chemical stability by losing marginal electrochemical activity.

Enhanced CO2 electrocatalytic conversion via surface treatment employing low temperature plasma (플라즈마 표면처리를 통한 CO2 전기화학적 전환 촉매성능 개선)

  • Choi, Yong-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.5
    • /
    • pp.261-272
    • /
    • 2022
  • CO2 electroreduction is considered as a means to overcome climate change by converting CO2 into value-added chemicals and liquid fuels. Although numerous researchers have screened versatile metal for the use of electrodes, and looked into the reaction mechanism, it is still required to develop highly enhanced electrocatalyst for CO2 reduction to reach beyond lab-scale. Plasma treatment applying onto the surface of meal electrodes could improve activity, selectivity and stability of the electrocatalysts. This review highlights the effect of plasma pretreatment, and provides insight to design suitable CO2 electrocatalyst.

Lattice Oxygen Activation in NiFe (Oxy)hydroxide using Se (셀레늄을 활용한 니켈철 (옥시)수산화물의 격자 산소 활성화)

  • Jo, Seunghwan;Sohn, Jung Inn
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.339-344
    • /
    • 2022
  • The lattice oxygen mechanism (LOM) is considered one of the promising approaches to overcome the sluggish oxygen evolution reaction (OER), bypassing -OOH* coordination with a high energetic barrier. Activated lattice oxygen can participate in the OER as a reactant and enables O*-O* coupling for direct O2 formation. However, such reaction kinetics inevitably include the generation of oxygen vacancies, which leads to structural degradation, and eventually shortens the lifetime of catalysts. Here, we demonstrate that Se incorporation significantly enhances OER performance and the stability of NiFe (oxy)hydroxide (NiFe) which follows the LOM pathway. In Se introduced NiFe (NiFeSe), Se forms not only metal-Se bonding but also Se-oxygen bonding by replacing oxygen sites and metal sites, respectively. As a result, transition metals show reduced valence states while oxygen shows less reduced valence states (O-/O22-) which is a clear evidence of lattice oxygen activation. By virtue of its electronic structure modulation, NiFeSe shows enhanced OER activity and long-term stability with robust active lattice oxygen compared to NiFe.

Heteroatom-doped carbon nanostructures as non-precious cathode catalysts for PEMFC (이종 원자 도핑 탄소 나노재료를 이용한 PEMFC Cathode용 촉매 합성 및 평가)

  • Jo, G.Y.;Shanmugam, S.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.406-409
    • /
    • 2012
  • Recently, enormous research efforts have been focused on the development of non-precious catalysts to replace Pt for electrocatalytic oxygen reduction reaction (ORR), and to reduce the cost of proton exchange membrane fuel cells (PEMFCs). In recent years, heteroatom (N, B, and P) doped carbon nanostructures have been received enormous importance as a non-precious electrode materials for oxygen reduction. Doping of foreign atom into carbon is able to modify electronic properties of carbon materials. In this study, nitrogen and boron doped carbon nanostructures were synthesized by using a facile and cost-effective thermal annealing route and prepared nanostructures were used as a non-precious electrocatalysts for the ORR in alkaline electrolyte. The nitrogen doped carbon nanocapsules (NCNCs) exhibited higher activity than that of a commercial Pt/C catalyst, excellent stability and resistance to methanol oxidation. The boron-doped carbon nanostructure (BC) prepared at $900^{\circ}C$ showed higher ORR activity than BCs prepared lower temperature (800, $700^{\circ}C$). The heteroatom doped carbon nanomaterials could be promising candidates as a metal-free catalysts for ORR in the PEMFCs.

  • PDF

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal;Babar, Pravin;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.217-222
    • /
    • 2020
  • The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.

Effective Electrode Structure for the Stability of Alkaline Hydrazine Fuel Cells (알칼라인 하이드라진 연료전지 운전 안정성을 위한 전극 구조)

  • Uhm, Sunghyun;Hong, Sujik;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.652-658
    • /
    • 2019
  • Direct hydrazine fuel cells (DHFCs) have been considered to be one of the promising fuel cells because hydrazine as a liquid fuel possesses several advantages such as no emission of CO2, relatively high energy density and catalytic activity over platinum group metal (PGM)-free anode catalysts. Judging from plenty of research works, however, regarding key components such as electrocatalysts as well as their physicochemical properties, it becomes quite necessary to understand better the underlying processes in DHFCs for the long term stability. Herein, we highlight recent studies of DHFCs in terms of a systematic approach for developing cost-effective and stable anode catalysts and electrode structures that incorporate mass transport characteristics of hydrazine, water and gas bubbles.

Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction (중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용)

  • Yoonmo Koo;Youngbin Lee;Kyungmin Im;Jinsoo Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2023
  • To improve the efficiency of water electrolysis, it is essential to develop an oxygen evolution reaction (OER) electrocatalyst with high performance and long-term stability, accelerating the reaction rate of OER. In this study, a hollow metal-organic framework (MOF)-derived ruthenium-cobalt oxide catalyst was developed to synthesize an efficient OER electrocatalyst. As the synthesized catalyst increases the surface exposure of ruthenium, a low overpotential (386 mV) was observed at a current density of 10 mA/cm2 with a low Tafel slope. It is expected to be able to replace noble metal catalysts by showing higher mass activity and stability than commercial RuO2 catalysts.