• Title/Summary/Keyword: electro-mechanical system

Search Result 700, Processing Time 0.032 seconds

Recent research trends on Bio-MEMS (Bio-MEMS분야의 최근 연구동향)

  • Park, Se-Kwang;Yang, Joo-Ran
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.259-270
    • /
    • 2010
  • MEMS(micro electro mechanical systems) is a technology for the manufacture hyperfine structure, as a micro-sensor and a driving device, by a variety of materials such as silicon and polymer. Many study for utilizing the MEMS applications have been performed in variety of fields, such as light devices, high frequency equipments, bio-technology, energy applications and other applications. Especially, the field of Bio-MEMS related with bio-technology is very attractive, because it have the potential technology for the miniaturization of the medical diagnosis system. Bio-MEMS, the compound word formed from the words 'Bio-technology' and 'MEMS', is hyperfine devices to analyze biological signals in vitro or in vivo. It is extending the range of its application area, by combination with nano-technology(NT), Information Technology(IT). The LOC(lab-on-a-chip) in Bio-MEMS, the comprehensive measurement system combined with Micro fluidic systems, bio-sensors and bio-materials, is the representative technology for the miniaturization of the medical diagnosis system. Therefore, many researchers around the world are performing research on this area. In this paper, the application, development and market trends of Bio-MEMS are investigated.

Implementation of simple statistical pattern recognition methods for harmful gases classification using gas sensor array fabricated by MEMS technology (MEMS 기술로 제작된 가스 센서 어레이를 이용한 유해가스 분류를 위한 간단한 통계적 패턴인식방법의 구현)

  • Byun, Hyung-Gi;Shin, Jeong-Suk;Lee, Ho-Jun;Lee, Won-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.406-413
    • /
    • 2008
  • We have been implemented simple statistical pattern recognition methods for harmful gases classification using gas sensors array fabricated by MEMS (Micro Electro Mechanical System) technology. The performance of pattern recognition method as a gas classifier is highly dependent on the choice of pre-processing techniques for sensor and sensors array signals and optimal classification algorithms among the various classification techniques. We carried out pre-processing for each sensor's signal as well as sensors array signals to extract features for each gas. We adapted simple statistical pattern recognition algorithms, which were PCA (Principal Component Analysis) for visualization of patterns clustering and MLR (Multi-Linear Regression) for real-time system implementation, to classify harmful gases. Experimental results of adapted pattern recognition methods with pre-processing techniques have been shown good clustering performance and expected easy implementation for real-time sensing system.

Design and characterization of a compact array of MEMS accelerometers for geotechnical instrumentation

  • Bennett, V.;Abdoun, T.;Shantz, T.;Jang, D.;Thevanayagam, S.
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.663-679
    • /
    • 2009
  • The use of Micro-Electro-Mechanical Systems (MEMS) accelerometers in geotechnical instrumentation is relatively new but on the rise. This paper describes a new MEMS-based system for in situ deformation and vibration monitoring. The system has been developed in an effort to combine recent advances in the miniaturization of sensors and electronics with an established wireless infrastructure for on-line geotechnical monitoring. The concept is based on triaxial MEMS accelerometer measurements of static acceleration (angles relative to gravity) and dynamic accelerations. The dynamic acceleration sensitivity range provides signals proportional to vibration during earthquakes or construction activities. This MEMS-based in-place inclinometer system utilizes the measurements to obtain three-dimensional (3D) ground acceleration and permanent deformation profiles up to a depth of one hundred meters. Each sensor array or group of arrays can be connected to a wireless earth station to enable real-time monitoring as well as remote sensor configuration. This paper provides a technical assessment of MEMS-based in-place inclinometer systems for geotechnical instrumentation applications by reviewing the sensor characteristics and providing small- and full-scale laboratory calibration tests. A description and validation of recorded field data from an instrumented unstable slope in California is also presented.

Non-invasive acceleration-based methodology for damage detection and assessment of water distribution system

  • Shinozuka, Masanobu;Chou, Pai H.;Kim, Sehwan;Kim, Hong Rok;Karmakar, Debasis;Fei, Lu
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.545-559
    • /
    • 2010
  • This paper presents the results of a pilot study and verification of a concept of a novel methodology for damage detection and assessment of water distribution system. The unique feature of the proposed noninvasive methodology is the use of accelerometers installed on the pipe surface, instead of pressure sensors that are traditionally installed invasively. Experimental observations show that a sharp change in pressure is always accompanied by a sharp change of pipe surface acceleration at the corresponding locations along the pipe length. Therefore, water pressure-monitoring can be transformed into acceleration-monitoring of the pipe surface. The latter is a significantly more economical alternative due to the use of less expensive sensors such as MEMS (Micro-Electro-Mechanical Systems) or other acceleration sensors. In this scenario, monitoring is made for Maximum Pipe Acceleration Gradient (MPAG) rather than Maximum Water Head Gradient (MWHG). This paper presents the results of a small-scale laboratory experiment that serves as the proof of concept of the proposed technology. The ultimate goal of this study is to improve upon the existing SCADA (Supervisory Control And Data Acquisition) by integrating the proposed non-invasive monitoring techniques to ultimately develop the next generation SCADA system for water distribution systems.

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.

A Study on a Dual Electromagnetic Sensor System for Weld Seam Tracking of I-Butt Joints

  • Kim, J.-W.;Shin, J.-H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement sensor and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor was determined far the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 ㎜, and it was revealed that the system has excellent seam tracking ability for the I-butt joint of sheet metal.

  • PDF

MRA AND POD APPLICATION FOR AERODYNAMIC DESIGN OPTIMIZATION (MRA와 POD를 적용한 공력특성 최적설계)

  • Koo, B.C.;Han, J.H.;Jo, T.H.;Park, K.H.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.7-15
    • /
    • 2015
  • This paper attempts to evaluate the accuracy and efficiency of a design optimization procedure by combining wavelets-based multi resolution analysis method and proper orthogonal decomposition (POD) technique. Aerodynamic design procedure calls for high fidelity computational fluid dynamic (CFD) simulations and the consideration of large number of flow conditions and design constraints. Thus, even with significant computing power advancement, current level of integrated design process requires substantial computing time and resources. POD reduces the degree of freedom of full system by conducting singular value decomposition for various field simulations. In this research, POD combined Design Optimization model is proposed and its efficiency and accuracy are to be evaluated. For additional efficiency improvement of the procedure, multi resolution analysis method is also being employed during snapshot constructions (POD training period). The proposed design procedure was applied to the optimization of wing aerodynamic performance. Throughout the research, it was confirmed that the POD/MRA design procedure could significantly reduce the total design turnaround time and also capture all detailed complex flow features as in full order analysis.

Development of a Non-contact Liquid Dispenser for High Contents Screening System (세포 기반 고집적 스크리닝 시스템용 비접촉식 고정밀 마이크로 디스팬서 제작)

  • Cho, Seong J.;Kim, Intae;Lim, Geunbae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.581-585
    • /
    • 2016
  • Nowadays medical treatment service increase due to ageing population and improving the quality of life. Accordingly it is predicted that drug discovery market will expansion continuously. Therefore it is necessary that profit creation by drug discovery on the global market is important. HCS(High Contents Screening) has been emerging as a potential method to solve problems of the present drug discovery. This research is about liquid dispenser for HCS. The purpose of this research is to manufacture high performance liquid dispenser for HCS. The dispenser is designed to control 5 liquids separately. The liquid contact parts are designed disposably, biocompatibly and chemically inertly. Air curtain is equipped at the side of tip to dispense very small liquid volume and to prevent hanging drop on tip. Valving is performed by just controlling the pressure of the pressure driven pump without valve.

Mechanical Properties for Methyl Cellulose(MC) Ingredient ER Fluids According to the Numbers of the Electrical Field Cycles (전기장 싸이클 수에 따른 MC성분 ER유체의 기계적성질)

  • 김옥삼;박우철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.296-301
    • /
    • 2001
  • Electro-Rheological (ER) fluids belong to a class of colloidal suspensions whose global characteristics can be controlled by the imposition of an appropriate external electrical field upon the fluid domain. The ER fluids for smart hydraulic system are a class of colloidal dispersion which exhibit large reversible changes in their rheological behavior when subjected to external electrical fields. This paper presents experimental results on mechanical properties of an ER fluids subjected to electrical fatigues. As a first step, ER fluid is made of methyl cellulose(MC) ingredient choosing 25% of particle weight-concentration. Following the construction of test for mechanical properties of ER fluid, the shear stress, dynamic yield stress and current density of the ER fluids are experimentally distilled as a function of electric field cycles. The mechanical properties test of operated ER fluids are distilled and compared with those of unused ER fluids.

  • PDF

Robust Wheel Slip Control for Brake-by-Wire System (Brake-by-Wire 시스템을 위한 강인한 휠 슬립 제어)

  • Hong Daegun;Huh Kunsoo;Kang Hyung-Jin;Yoon Paljoo;Hwang Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2005
  • Wheel-slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. But, in order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force is required. For example, in the case of EHB (Electro-Hydraulic Brake) systems, the tire braking force cannot be measured directly, but can be approximated based on the characteristics of the brake disk-pad friction. The friction characteristics can change significantly depending on aging of the brake, moisture on the contact area, heat etc. In this paper, a wheel slip The proposed wheel slip control system is composed of two subsystems: braking force monitor and robust slip controller In the brake force monitor subsystem, the tire braking forces as well as the brake disk-pad friction coefficient are estimated considering the friction variation between the brake pad and disk. The robust wheel slip control subsystem is designed based on sliding mode control methods and follows the target wheel-slip using the estimated tire braking forces. The proposed sliding mode controller is robust to the uncertainties in estimating the braking force and brake disk-pad friction. The performance of the proposed wheel-slip control system is evaluated in various simulations.