• 제목/요약/키워드: electro-adhesive force

검색결과 3건 처리시간 0.016초

2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석 (Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes)

  • 오명훈;김재현;김현석;조선호
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.199-204
    • /
    • 2021
  • 본 논문에서는 정전기 흡착패드를 구성하는 곡면형 전극의 기하학적 엄밀성을 고려하기 위해 정전기 문제에 대하여 CAD에서 사용하는 NURBS 기저함수를 직접 사용하는 아이소-지오메트릭 해석 기법을 도입하였다. 정전기 흡착력을 곡선 접촉면에서 구하는데 법선 벡터의 영향이 크므로 엄밀한 기하형상을 고려하는 아이소-지오메트릭 해석이 강점을 갖는다. 수치 예제를 통해 곡면과 평면에서 반복 구조의 유무에 따른 파라메터 연구를 수행하여 곡면형 전극의 흡착력이 좋은 성능을 가짐을 보였다. 정전기 흡착력의 성분을 분석하였을 때 정전기 흡착력의 차이는 법선 성분 전기장의 증가로 인한 것으로 파악되었다. 결론적으로 곡면형 전극에서도 전극 사이 거리가 가까워지는 아래로 볼록인 경우가 가장 성능이 좋고, 위로 볼록인 경우에는 성능이 가장 낮음을 보였다.

탄소나노튜브 액츄에이터의 이론적 모델링 (Analytical Modeling of Carbon Nanotube Actuators)

  • 염영일;박철휴
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1006-1011
    • /
    • 2004
  • Carbon nanotubes have outstanding properties which make them useful for a number of high-technology applications. Especially, single-walled carbon nanotube (SWNT), working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube structure simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two SWNTs. For predicting the geometrical and physical parameters such as deflection, slope, bending moment and induced force with various applied voltages, the analytical model for a 3 layer bimorph nanotube actuator is developed by applying Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy Principles. Also, the brief history of carbon nonotube is overviewed and its properties are compared with other functional materials. Moreover, an electro-mechanical coupling coefficient of the carbon nanotube actuator is discussed to identify the electro-mechanical energy efficiency.

The Performance Evaluation of a Hydraulic and Magnetic Clamp Device Manufactured to Transport with Safety the Curved Steel Plate Required for Shipbuilding

  • Moon, Byung Young;Park, Kwang Bok;Hong, Young Jun;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.527-535
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was attempted to realize a magnetic clamp crane system that uses 8 simultaneously actuating individual hydraulic cylinders. Through this approach, a Sr type of ferritic permanent magnet ($SrO{\cdot}6Fe_2O_3$), not the previously employed electro-magnet, was utilized for the purpose of lifting and transporting the heavy weighted and oversized curved steel plates used for manufacturing the ships. This study is aimed at manufacturing and developing the hydraulic magnetic clamp prototype, which is composed of three main parts - the base frame, cylinder joint, and magnet joint - in order to safely transport such curved steel plates. Furthermore, this research was pursued to conduct a performance evaluation as to the prototype manufacture and acquire the planned quantity value and the development purpose items. The most significant item for a performance evaluation was estimated for the magnetic adhesive force (G) and in this process, a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc) was utilized. In addition, other relevant items such as hoist tension (kN), transportation time (sec), and the applied load (Kgf) exerted on the hydraulic cylinders were also evaluated in order to acquire the optimum quantity value. As a result of the evaluation, the relevant device turned out to be suitable for safely transporting the curved steel plates.