This study attempts to examine the economic impacts of electricity industry in Korea and Japan using an inter-industry analysis. Specifically, the study analyzes and compares electricity industry between Japan and Korea through production-inducing effect and value added inducing effect of electricity industry based on demand-driven model. Moreover, this study deals with supply shortage effect and sectoral price effect by using supply-driven model and Leontief price model, respectively. This study analyses the electricity industry through exogenous approach. The results show that electricity industry induces prodution-inducing effect of 0.5946 won in other industries in Korea and 0.5446 yen in other industries in Japan. Value-added-inducing effects are 0.1716 won in other in other industries in Korea and 0.2929 yen in other industries in Japan. Supply shortage effects of electricity industry are 1.5932 won in other industries in Korea and 1.2801 yen in other industries in Japan. And sectoral price effects are 0.2113% in Korea and 0.2196% in Japan due to the price increase of 10% of electricity industry.
Kim Dae-Yong;Lee Chan-Joo;Jeong Yun-Won;Park Jong-Bae;Shin Joong-Rin
The Transactions of the Korean Institute of Electrical Engineers A
/
v.55
no.2
/
pp.85-93
/
2006
Since the SMP(System Marginal Price) is a vital factor to the market participants who intend to maximize the their profit and to the ISO(Independent System Operator) who wish to operate the electricity market in a stable sense, the short-term marginal price forecasting should be performed correctly. In an electricity market the short-term market price affects considerably the short-term trading between the market entities. Therefore, the exact forecasting of SMP can influence on the profit of market participants. This paper presents a new methodology for a day-ahead SMP forecasting using ARIMA(Autoregressive Integrated Moving Average) model based on the time-series method. And also the correction algorithm is proposed to minimize the forecasting error in order to improve the efficiency and accuracy of the SMP forecasting. To show the efficiency and effectiveness of the proposed method, the case studies are performed using historical data of SMP in 2004 published by KPX(Korea Power Exchange).
This paper describes the forecast of power plant construction in a competitive korean electricity market. In Korea, KEPCO (Korea Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company in Korea at present time. Fossil power companies are scheduled to be sold to private companies including foreign investors. Nuclear power company is owned and controlled by government. The competition in generation market will start from 2003. ISO (Independence System Operator will purchase the electricity from the power exchange market. The market price is determined by the SMP(System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners such as government are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies such as nuclear and coal plants. Large unclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT(Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investors behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investors behavior can be applied to the new investments for the power plant. Under these postulations, there is the potential for power plant construction to appear in waves causing alternating periods of over and under supply of electricity like commodity production or real estate production. A computer model was developed to sturdy the possibility that construction will appear in waves of boom and bust in Korean electricity market. This model was constructed using System Dynamics method pioneered by Forrester(MIT, 1961) and explained in recent text by Sternman (Business Dynamics, MIT, 2000) and the recent work by Andrew Ford(Energy Policy, 1999). This model was designed based on the Energy Policy results(Ford, 1999) with parameters for loads and resources in Korea. This Korea Market Model was developed and tested in a small scale project to demonstrate the usefulness of the System Dynamics approach. Korea electricity market is isolated and not allowed to import electricity from outsides. In this model, the base load such as unclear and large coal power plant are assumed to be user specified investment and only CCGT is selected for new investment by investors in the market. This model may be used to learn if government investment in new unclear plants could compensate for the unstable actions of private developers. This model can be used to test the policy focused on the role of unclear investments over time. This model also can be used to test whether the future power plant construction can meet the government targets for the mix of generating resources and to test whether to maintain stable price in the spot market.
This paper empirically analyzes the effect of renewable electricity generation on the System Marginal Price (SMP) in Korea. Using an ARX-GARCHX model with hourly data from 2016 to 2020, we evaluate SMP determinants and merit order effects. As a result, we find that solar and wind power, as well as gas price and total load, play a critical role in the SMP. In particular, solar power reduces the SMP level but raises volatility during peak and off-peak periods. This result implies that SMP may fall as renewable electricity generation increases, leading to a decrease in the profitability of existing power plants and investment in renewables. On the other hand, even if the subsidy of renewable energy increases the burden on the SMP, it can be offset by the merit order effect, which lowers the SMP.
Kim, Hyun-Houng;Kim, Jin-Ho;Park, Jong-Bae;Shin, Joong-Rin
The Transactions of The Korean Institute of Electrical Engineers
/
v.57
no.7
/
pp.1157-1166
/
2008
This paper presents a new approach for the evaluation of location marginal prices (LMPs) considering demand-side bidding (DSB) in a competitive electricity market. The stabilization of the electric power supply and demand balance is one of the major important activities in electric power industry. In this paper, we present an analytical method for calculation of LMPs considering DSB, which has opportunity to compete with generating units, as England & Wales Pool's DSB scheme[1]. Also, we propose a new approach that LMP considering DSB is divided into three components. The proposed approach can be used for the evaluation of demand-side bidding into the electricity market and the assessment of the influence of DSB on total production costs and LMPs as well as three components.
Yoo, Young Don;Kim, Su Hyun;Cho, Wonjun;Mo, Yonggi;Song, Taekyong
Korean Chemical Engineering Research
/
v.52
no.6
/
pp.796-806
/
2014
The key for the commercial deployment of IGCC power plants or chemical (methanol, dimethyl ether, etc.) production plants based on coal gasification is their economic advantage over plants producing electricity or chemicals from crude oil or natural gas. The better economy of coal gasification based plants can be obtained by co-production of electricity and chemicals. In this study, we carried out the economic feasibility analysis on the process of co-producing electricity and DME (dimethyl ether) using coal gasification. The plant's capacity was 250 MW electric and DME production of 300,000 ton per year. Assuming that the sales price of DME is 500,000 won/ton, the production cost of electricity is in the range of 33~58% of 150.69 won/kwh which is the average of SMP (system marginal price) in 2013, Korea. At present, the sales price of DME in China is approximately 900,000 won/ton. Therefore, there are more potential for lowering the price of co-produced electricity when comparing that from IGCC only. Since the co-production system can not only use the coal gasifier and the gas purification process as a common facility but also can control production rates of electricity and DME depending on the market demand, the production cost of electricity and DME can be significantly reduced compared to the process of producing electricity or DME separately.
Various pros and cons are raised as to the nuclear and renewable power portions. In order to generate scientific, objective, and comparative data, this study reviewed energy policies of some countries and derived 34 possible energy mix scenarios depending on the nuclear portion, the renewable portion and the make-up power sources. For each scenario, the unit electricity cost was calculated using the BLMP (Base Load Marginal Price) and SMP (System Marginal Price) methodology, which is currently adopted in Korean electricity market. The unit electricity cost for the current energy mix was 22.18 Won/kWh and those fir other scenarios spreaded from 19.74 to 164.07 Won/kWh excluding the transmission costs and profits of the electric utility companies. Generally, the increased nuclear power portion leads reduction in the unit electricity cost while the trend is reversed in the renewable power portion. Notable observation is that when the renewable power portion exceeds 20%, as the scenario cannot enjoy the benefit of cheap base load, the unit electricity cost at low demand time zone is increased.
The Transactions of the Korean Institute of Electrical Engineers P
/
v.67
no.4
/
pp.183-190
/
2018
Predicting accurate electricity prices is an important task in the electricity trading market. To address the electricity price forecasting problem, various approaches have been proposed so far and it is known that linear regression-based approaches are the best. However, the use of such linear regression-based methods is limited due to low accuracy and performance. In traditional linear regression methods, it is not practical to find a nonlinear regression model that explains the training data well. If the training data is complex (i.e., small-sized individual data and large-sized features), it is difficult to find the polynomial function with n terms as the model that fits to the training data. On the other hand, as a linear regression model approximating a nonlinear regression model is used, the accuracy of the model drops considerably because it does not accurately reflect the characteristics of the training data. To cope with this problem, we propose a new electricity price forecasting method that divides the entire dataset to multiple split datasets and find the best linear regression models, each of which is the optimal model in each dataset. Meanwhile, to improve the performance of the proposed method, we modify the proposed localized linear regression method in the map and reduce way that is a framework for parallel processing data stored in a Hadoop distributed file system. Our experimental results show that the proposed model outperforms the existing linear regression model. Specifically, the accuracy of the proposed method is improved by 45% and the performance is faster 5 times than the existing linear regression-based model.
The Transactions of The Korean Institute of Electrical Engineers
/
v.56
no.10
/
pp.1731-1737
/
2007
The Korea electricity wholesale market is operated under the cost-based-pool system and the government regulation to the new generation capacities in order to insure the resource adequacy. The goal of government's regulation is the electricity market stability by attracting proper generation investment while keeping the reliability of system. Generation companies must mandatory observe that government plan by now. But if the restructuring is to be complete, generation companies should not bear any obligation to invest unless their profitability is guaranteed. Namely the investors' behavior will be affected by the market prices. In this paper, the system dynamics model for Korea wholesale electricity market to examine whether competitive market can help to stabilize is developed and analyzes the investors behavior. The simulation results show that market controlled by government will be operated stable without resulting in price spike but there is no lower price because of maintaining the reasonable reserve margin. However, if the competition is introduced and the new investment is determined by the investor's decision without government intervention, the benefits from lower wholesale price are expected. Nevertheless, the volatility in the wholesale market increases, which increases the investment risks.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.5
/
pp.215-219
/
2021
In this paper, we propose a deep reinforcement learning algorithm-based bi-directional electricity negotiation scheme that adjusts and propose the price they want to exchange for negotiation over smart building and utility grid. By employing a deep Q network algorithm, which is a kind of deep reinforcement learning algorithm, the proposed scheme adjusts the price proposal of smart building and utility grid. From the simulation results, it can be verified that consensus on electricity price negotiation requires average of 43.78 negotiation process. The negotiation process under simulation settings and scenario can also be confirmed through the simulation results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.