• Title/Summary/Keyword: electricity demand function

Search Result 72, Processing Time 0.022 seconds

Modeling Korean Energy Consumption Behavior Using a Concavity Imposed Translog Cost Function (정규성 개선에 중점을 둔 제조업 에너지 수요구조 모형 연구 : 오목성 조건을 만족하는 Translog 비용함수 모형)

  • Kim, Jihyo;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.19 no.3
    • /
    • pp.633-658
    • /
    • 2010
  • In this paper, we estimate the Translog cost function in Korean manufacturing, using capital (K), labor (L), material (M), electricity (E), fuel (F) data over the period from 1970 to 2005. Especially, this paper investigates the impact of imposing concavity in the estimation of a Translog cost function. Although the value of log-likelihood is somewhat reduced in a concavity imposed function rather than a function which is not, a concavity imposed function satisfies regularity conditions (monotonicity, positivity, concavity) at all data points. We also calculate price elasticities using a concavity imposed Translog cost function. Electricity complements capital so electricity demand increases as capital demand increases. Meanwhile, electricity substitutes labor, fuel, and material. These results show that Korean manufacturing experienced a structural change of increase in electricity demand.

  • PDF

New Electricity Load Model (새로운 전력 부하모형)

  • Kim, Joo-Hak;Choi, Joon-Young;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.289-291
    • /
    • 2000
  • In a competitive electricity power market, the price of electricity changes instantly, that of conventional market is predetermined and hardly changes. In such a new environment, customers' behaviors change instantly according to the changing electricity prices. If we develop a electricity load model that well describes the behavior of electricity consumers, we can utilize that model in forecasting the amount of future load, solving the load flow problem and finding the weak point of the system. In this paper new electricity model that considers the price of electricity and power factor of the load is presented. While conventional load model, which is demand function of electricity, uses the price of real and reactive power as the independent variable of the demand function. this new load model uses price of real power and penalty factor according to the power factor for the calculation of amount of electricity demand.

  • PDF

Estimation of residential electricity demand function using cross-section data (횡단면 자료를 이용한 주택용 전력의 수요함수 추정)

  • Lim, Seul-Ye;Lim, Kyoung-Min;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This paper attempts to estimate the residential electricity demand function, using survey data of 521 households in Korea. As the residential electricity demand function provides us information on the pattern of consumer's electricity consumption, it can be usefully utilized in predicting the impact of policy variables such as electricity price and forecasting electricity demands. We apply least absolute deviation(LAD) estimation as a robust approach to estimating parameters. The results showed that price and income elasticities are -0.68 and 0.14 respectively, and statistically significant at the 10% levels. The price and income elasticities portray that residential electricity is price- and income-inelastic. This implies that the residential electricity is indispensable goods to human-being's life, thus the residential electricity demand would not be promptly adjusted to responding to price and/or income change.

Estimation of the electricity demand function using a lagged dependent variable model (내생시차변수모형을 이용한 전력수요함수 추정)

  • Ahn, So-Yeon;Jin, Se-Jun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.37-44
    • /
    • 2016
  • The demand for electricity has a considerable impact on various energy sectors since electricity is generated from various energy sources. This paper attempts to estimate the electricity demand function and obtain some quantitative information on price and income elasticities of the demand. To this end, we apply a lagged dependent variable model to derive long-run as well as short-run elasticities using the time-series data over the period 1991-2014. Our dependent variable is annual electricity demand. The independent variables include constant term, real price of electricity, and real gross domestic product. The results show that the short-run price and income elasticities of the electricity demand are estimated to be -0.142 and 0.866, respectively. They are statistically significant at the 5% level. That is, the electricity demand is in-elastic with respect to price and income changes in the short-run. The long-run price and income elasticities of the electricity demand are calculated to be -0.210 and 1.287, respectively, which are also statistically meaningful at the 5% level. The electricity demand is still in-elastic with regard to price change in the long-run. However, the electricity demand is elastic regarding income change in the long-run. Therefore, this indicates that the effect of demand-side management policy through price-control is restrictive in both the short- and long-run. The growth in electricity demand following income growth is expected to be more remarkable in the long-run than in the short-run.

Analysis of Cournot Model of Electricity Market with Demand Response (수요반응자원이 포함된 전력시장의 쿠르노 경쟁모형 해석)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.16-22
    • /
    • 2017
  • In order to reduce costs of electricity energy at periods of peak demand, there has been an exponential interest in Demand Response (DR). This paper discusses the effect on the participants' behavior in response to DR. Under the assumption of perfect competition, the equilibrium point of the electricity market with DR is derived by modeling a DR curve, which is suitable for microeconomic analysis. Cournot model is used to analyze the electricity market of imperfect competition that includes strategic behavior of the generation companies. Strategic behavior with DR makes it harder to compute equilibrium point due to the non-differential function of payoff distribution. This paper presents a solution method for achieving the equilibrium point using the best response function of the strategic players. The effect of DR on the electricity market is illustrated using a test system.

Social Welfare Analysis of Demand Response from the Viewpoint of Demand Function (수요함수 관점에서 해석한 수요반응의 사회적 후생 분석)

  • Lee, Kwang-Ho;Yang, Kwan-mo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.23-26
    • /
    • 2017
  • Social Welfare is useful concept for evaluating the effectiveness of an economic policy in micro economics. This paper focuses on Social Welfare(SW) of electricity market incorporating demand response(DR). Competition between DR and generation company is modeled as a simple bid function. DR function can be considered as an negative generation(called Negawatt) and as an element of modified demand function. These two approaches result in the same demand reduction, generation power, and the market price. However, SW in the modified demand function approach is not identical to SW in the Negawatt approach. It makes the numerical index of DR effectiveness less persuasive. This paper proposes modified definition of SW in the demand function approach. The proposed definition of SW leads the DR effectiveness index to be identical to that in the Negawatt approach.

Supply Function Nash Equilibrium Considering Stochastic Demand Function (확률적 수요함수를 고려한 공급함수의 전략변수 내쉬균형 연구)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.20-24
    • /
    • 2008
  • A bid-based pool(BBP) model is representative of energy market structure in a number of restructured electricity markets. Supply function equilibrium(SFE) models of interaction better match what is explicitly required in the bid formats of typical BBP markets. Many of the results in the SFE literature involve restrictive parametrization of the bid cost functions. In the SFE models, two parameters, intercept and slope, are available for strategic bidding. This paper addresses the realistic competition format that players can choose both parameters arbitrarily. In a fixed demand function, equilibrium conditions for generation company's profit maximization have a degree of freedom, which induces multi-equilibrium. So it is hard to choose a convergent equilibrium. However, consideration of stochastic demand function makes the equilibrium conditions independent each other based on the amount of variance of stochastic demand function. This variance provides the bidding players with incentives to change the slope parameter from an equilibrium for a fixed demand function until the slope parameter equilibrium.

A Proposal for Inverse Demand Curve Production of Cournot Model for Application to the Electricity Market

  • Kang Dong-Joo;Oh Tae-Kyoo;Chung Koohyung;Kim Balho H.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.403-411
    • /
    • 2005
  • At present, the Cournot model is one of the most commonly used theories to analyze the gaming situation in an oligopoly type market. However, several problems exist in the successful application of this model to the electricity market. The representative one is obtaining the inverse demand curve able to be induced from the relationship between market price and demand response. In the Cournot model, each player offers their generation quantity to obtain maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect the real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears over the long-term through statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as the trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium.

A Study on the Improvement of Planning procedure and estimation of Capacity Addition in Long Term Electricity Plan (전력수급기본계획 수립에서 의향서 평가절차의 개천 방안)

  • Kim, C.S.;Rhee, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.745-747
    • /
    • 2005
  • After restructuring electricity industry, national long term electricity plans moved to "Basic plan of electricity supply and demand" from "Long term power development plan". The main point is a change of path from plan of power development at national level to plan of electricity supply and demand at company level. A proposal by generation company is surveyed and reflected to the basic plan of electricity supply and demand. The second plan shows over 40% reserves in result of the proposals. It is the time to evaluating the proposal which covers market function in the basic plan of electricity supply and demand at the stage of market change. This research presents the need of evaluation of proposals and the methods of evaluation. Also it presents the alternative planning procedure to reflecting the evaluation methods.

  • PDF

An Analysis of the Price Elasticity of Electricity Demand and Price Reform in the Korean Residential Sector Under Block Rate Pricing (구간별 가격체계를 고려한 우리나라 주택용 전력수요의 가격탄력성과 전력누진요금제 조정방안)

  • Jo, Ha-Hyun;Jang, Min-Woo
    • Environmental and Resource Economics Review
    • /
    • v.24 no.2
    • /
    • pp.365-410
    • /
    • 2015
  • Block-rate structures are widely used in utility-pricing, including the Korean residential electricity sector. In the case of the current pricing structure, Korean citizens are highly concerned about incurring excessive electricity costs. For these reasons, there have been many discussions concerning mitigation of the strict pricing structure. Existing studies on the residential electricity demand function under block-rate structure have the following three issues - the consumer's budget constraint is non-linear, perceived price under block-rate structure is uncertain, block-rate structure has endogeneity in the price variable. In this context, this paper estimates the residential electricity demand function using micro-level household expenditure data and simulates the impact of alternative block-pricing schedules.