• Title/Summary/Keyword: electrical vehicle

Search Result 2,019, Processing Time 0.034 seconds

Thrust Performance Improvement of a Linear Induction Motor

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.81-85
    • /
    • 2011
  • The end effect of a linear induction motor (LIM) has been known for several decades, especially in high speed operation. The exit part of the primary is not dealt as extensively as the entry part because of its minor effect. However, the exit part is one of the keys to weaken the dolphin effect, which occurs in high speed operation. In this paper, the concept of the virtual primary core is introduced, and chamfering of the primary outlet teeth is proposed to minimize the longitudinal end effect at the exit zone. For this, LIM for the high-speed train is designed and analyzed by using finite element method. Results confirm that chamfering can improve thrust performance effectively.

Observer Based Adaptive Control of Longitudinal Motion of Vehicles (관측자를 이용한 직진 주행 차량의 적응 제어)

  • Kim, Eung-Seok;Kim, Dong-Hun;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.130-135
    • /
    • 2001
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters, mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed on this paper is stable. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

Analysis and Evaluation of Buck Converter with LC Input Filter for a PTC Heater in the Electric Vehicle (전기자동차용 PTC 히터 구동을 위한 입력 필터를 갖는 벅 컨버터의 특성 분석 및 성능 평가)

  • Jeon, Yong-Sung;Shin, Hye-Su;Chae, Beom-Seok;La, Jae-Du;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.59-66
    • /
    • 2012
  • Recently, the market of Electric Vehicle(EV) is increasing more and more than before. Thus a new heater for the EV is required. The PTC devices may be used the heater for the EV. In this paper, a simple DC-DC Converter is proposed as the PTC Heater for the EV. The proposed circuit was optimally desired to decrease the stress of the power devices and reduce the current ripples. To apply the result of the test in the laboratory to the actual EV system with the high DC voltage, ripple current, average current and output peak current are predicted by using the least-squares method. Finally, the proposed circuit is validated by various experiments.

3-D Working Point Decision Method for Industrial Robot (산업용 로봇의 3차원 작업 위치 결정 방법)

  • Ryu, Hang-Ki;Lee, Jae-Kook;Kim, Byeong-Woo;Choi, Won-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.121-127
    • /
    • 2008
  • In this paper, we propose a new 3-D working point determination method for industrial robot using vision camera system and block interpolation technique with feature points in a vehicle body. To detect the feature points in a vehicle body, we applied the pattern matching method. For determination of working point, we applied block interpolation method. The block consists of 3-D type blocks with detected feature points per section. 3-D position is selected by Euclidean distance between 245 feature values and an acquired feature point. In order to evaluate the proposed algorithm, experiments are performed in glass equipment process in real industrial vehicle assembly line.

Control validation of Peugeot 3∞8 HYbrid4 Vehicle Using a Reduced-scale Power HIL Simulation

  • Letrouve, Tony;Lhomme, Walter;Bouscayrol, Alain;Dollinger, Nicolas
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1227-1233
    • /
    • 2013
  • The new engineering challenges lead to a control of a vehicle more and more complex. To tackle this issue, Hardware-In-the-Loop (HIL) simulation is used in the development of real-time embedded systems. In this paper, the control of a double parallel hybrid vehicle is validated using a reduced power HIL simulation. A graphical description is used in order to organize the emulation and control. Some experimental results of a versatile testbed are given for the Peugeot $3{\infty}8$ HYbrid4.

Development of Noncontactable Joystick Controller for Low Speed Electric Vehicle (저속 전기자동차 제어용 비접촉식 조이스틱 개발)

  • Pharm, Trung Hieu;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.549-554
    • /
    • 2012
  • Noncontactable joystick for a low speed electric vehicle(LSEV) is developed. The joystick is proposed to replaced the steering wheel in a conventional LSEV. The main advantages of the proposed joystick are a durable and a stable in structure, simple and easy to control through discriminating the driving and braking area. To reduce error and stability in the joystick control, input and output signal of the joystick are manipulated by data averaging and differntiation. With this algorithm, the driving resolution and capability are improved. To verify the proposed algorithm, a simple prototype model which has two electric motors for propulsion and steering are used. Test results show that the prototype joystick control system is applicable to an LSEV dirve.

Development of a Real-Time Collision Avoidance Algorithm for eXperimental Autonomous Vehicle (무인자율차량의 실시간 충돌 회피 알고리즘 개발)

  • Choe, Tok-Son
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1302-1308
    • /
    • 2007
  • In this paper, a real-time collision avoidance algorithm is proposed for experimental Autonomous Vehicle(XAV). To ensure real-time implementation, a virtual potential field is calculated in one dimensional space. The attractive force is generated by the steering command either transmitted in the remote control station or calculated in the Autonomous Navigation System(ANS) of the XAV. The repulsive force is generated by obstacle information obtained from Laser Range Finder(LRF) mounted on the XAV. Using these attractive and repulsive forces, modified steering, velocity and emergency stop commands are created to avoid obstacles and follow a planned path. The suggested algorithm is inserted as one component in the XAV system. Through various real experiments and technical demonstration using the XAV, the usefulness and practicality of the proposed algorithm are verified.

A Study on Energy Optimization Algorithm of Electric Vehicle Charging System (전기자동차 충전시스템의 에너지 최적화 알고리즘에 관한 연구)

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.369-374
    • /
    • 2018
  • In this paper, the energy cost saving in multi-channel electric vehicle charging system. Joint use of the electric car charger battery state of charging proposed a method based charging. A linear programming with two type is used for optimal control, and the time-of-use price is included to calculate the energy costs. Simulation results show that the reductions of energy cost and peak power can be obtained using proposed method.

An Effect of Maximizing Efficiency Control of Induction Motor for Electric Vehicle Drive Systems(II) (전기자동차 구동시스템에서의 유도전동기의 최대효율제어 효과(II))

  • 최욱돈;김동희;노채균
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.5
    • /
    • pp.74-79
    • /
    • 2000
  • This paper presents the test result of electric vehicle to evaluate a point of difference between maximizing efficiency control and conventional constant flux control(CFX) strategy of induction motor driver. A proposed maximizing efficiency control(MEC) strategy is compared with th constant flux control strategy. The comparison test is carried out with two types of F.T.P-72 and E.P.A driving schedule. This research shown the effectiveness of an enlargement of driving distance of the electric vehicle when a maximizing efficiency control strategy adopted.

  • PDF

Optimal Performance Characteristic of Axial Flux Motor by Controlling Air Gap (공극 제어에 의한 Axial Flux Motor의 최적 운전 특성)

  • 오성철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.535-540
    • /
    • 2003
  • Since axial flux motor has an advantage over more conventional radial flux type motor such as high power density, it can be used as a power train for hybrid electric vehicle and electric vehicle. Also operating range can be extended and efficiency can be improved by changing air gap. Optimal operating air gap is estimated based on the measured efficiency at different air gap. Motor model is developed based on estimated optimal air gap and efficiency. Motor/controller performance is analyzed through simulation. Possible application area of axial flux motor was explored through simulation.