• Title/Summary/Keyword: electrical steels

Search Result 70, Processing Time 0.032 seconds

The Effect of Boronizing on the Magnetization Behaviour of Low Carbon Microalloyed Steels

  • Calik, Adnan;Karakas, Mustafa Serdar;Ucar, Nazim;Aytar, Omer Baris
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.96-99
    • /
    • 2012
  • The change of saturation magnetization in boronized low carbon microalloyed steels was investigated as a function of boronizing time. Specimens were boronized in an electrical resistance furnace for times ranging from 3 to 9 h at 1123 K. The metallurgical and magnetic properties of the specimens were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). A boride layer with saw-tooth morphology consisting of FeB and $Fe_2B$ was observed on the surface, its thickness ranged from 63 ${\mu}m$ to 140 ${\mu}m$ depending on the boronizing time. XRD confirmed the presence of $Fe_2B$ and FeB on the surface. The saturation magnetization decreased with increasing boronizing time. This decrease was attributed to the increased thickness of the FeB and $Fe_2B$ phases. Cracks were observed at the FeB/$Fe_2B$ interfaces of the samples. The number of interfacial cracks increased with increasing boronizing time.

Surface Characteristics of Tool Steel Machined Using Micro-EDM

  • Anwar, Mohammed Muntakim;San, Wong Yoke;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.74-78
    • /
    • 2008
  • High-speed tool steels are extensively used in tooling industries for manufacturing cutting tools, forming tools, and rolls. Electrical discharge machining (EDM) has been found to be an effective process for machining these extremely hard and difficult-to-cut materials. Extensive research has been conducted to identify the optimum machining parameters for EDM with different tool steels. This paper presents a fundamental study of the surface characteristics of SKH-51 tool steel machined by micro-EDM, with particular focus on obtaining a better surface finish. An RC pulse generator was used to obtain a better surface finish as it produces fine discharge craters. The main operating parameters studied were the gap voltage and the capacitance while the resistance and other gap control parameters were kept constant. A negative tungsten electrode was used in this study. The micro-EDM performance was analyzed by atomic force microscopy to determine the average surface roughness and the distance between the highest peak and lowest valley. The topography of the machined surface was observed using a scanning electron microscope and a digital optical microscope.

Core Loss Analysis of IPM Motor Considering Magnetic Saturation and Manufacturing of Electrical Steel (전기강판의 가공 및 포화를 고려한 IPM 모터의 철손 해석)

  • Ha, Kyung-Ho;Kim, Gi-Hyun;Kim, Jae-Kwan;Lee, Sun-Kwon;Na, Min-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.887.1_888.1
    • /
    • 2009
  • This paper proposes a core loss analysis method to obtain high accuracy prediction by using Multi-curve representing magnetic properties of a electrical steel in Finite Element Analysis (FEA). Generally, the magnetic prosperities of the electrical steel are measured by Epstein Method based on the international standards that are not good sufficient to predict motor performances. The method only aims to grade products in steel companies The magnetic properties of actual stator core is highly different to those given by steel companies due to the fact that stacking effect, shearing stress, nature anisotropy of electrical steels are not taken into account. In this paper, the magnetic properties are variously measured by three measuring devices, and then the several BH curves and BW curves obtained are used to analyze the core loss of a IPM. The BH curve in the high magnetic field are extrapolated using the mathematical formulation with the maximum saturation magnetic polarization measured

  • PDF

Evaluation of Material Degradation Using Electrical Resistivity Method (전기비저항법을 이용한 재료열화 평가)

  • Seok, Chang-Seong;Kim, Dong-Jung;Bae, Bong-Guk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2995-3002
    • /
    • 2000
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at 630$\^{C}$. And the DC potential drop method and destructive methods such as tensile, K(sub)IC and hardness tests were used in order to evaluate the degradation of 1-Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimated the material degradation, and to analyse the relationship between the electrical relationship between the electrical resistivity and the degree material degradation.

Design of a FFR-typed High Power Deep-water Sonar Transducer using a Coupled FE-BEM (결합형 유한요소-경계요소 기법에 의한 FFR 형태의 고출력 심해저용 쏘나 변환기 설계)

  • Jarng Soon Suck;Lee Je Hyeong;Ahn Heung Gu;Choi Heun Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.224-227
    • /
    • 1999
  • A high power deep-water sonar transducer of FFR (Free Flooded Ring) type has been designed using a coupled FE-BEM. The present sonar transducer is composed of rectangular piezoelectric ceramics and pie-shaped steels (or the advantage of simple fabrication. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state frequency response for TX and RX displacement modes, directivity patterns, back-scattering patterns, bandwidths, transmitting voltage responses and receiving sensitivity responses. The TV response shows a very high acoustic pressure of 150 dB/lV (ref $1{\mu}Pa$ at 1m) at 1900 Hz. This ultra high power response of the sonar transducer indicates a new possibility of the sonar transducer development.

  • PDF

Analysis of WPT Characteristics by Shielding Materials (차폐 재질에 따른 무선전력전송 특성 분석)

  • Lee, Yu-Kyeong;Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.623-628
    • /
    • 2015
  • In this paper, the shield plate was applied to the wireless power transfer (WPT) system. Then we compared transmission efficiency of WPT system between transmitter and receiver coils. The superconductor coil was applied to transmitter and receiver coils in order to increase the transmission efficiency of WPT. The superconductor coil was more effective to power transmission as its current density was higher than normal conductor coil. Efficiency of WPT between transmitter and receiver coils was changed by a quality of shielding. We used the shielding materials such as glass, iron, steels, aluminum etc. The efficiency of WPT system was depended on the shielding materials of transmitter and receiver coils. As a result, magnetic material such as aluminum, iron reduced the magnetic flux density and the efficiency of WPT. remarkably, but in non-magnetic material such as glass and plastic, the efficiency of WPT was unaffected.

Synthesis and Characterization of the Co-electrolessly Deposited Metallic Interconnect for Solid Oxide Fuel Cell (무전해 코발트 코팅된 금속계 SOFC분리판의 제조 및 특성 평가)

  • Han, Won-Kyu;Ju, Jeong-Woon;Hwang, Gil-Ho;Seo, Hyun-Seok;Shin, Jung-Chul;Jun, Jae-Ho;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.356-363
    • /
    • 2010
  • For this paper, we investigated the area specific resistance (ASR) of commercially available ferritic stainless steels with different chemical compositions for use as solid oxide fuel cells (SOFC) interconnect. After 430h of oxidation, the STS446M alloy demonstrated excellent oxidation resistance and low ASR, of approximately 40 $m{\Omega}cm^2$, of the thermally grown oxide scale, compared to those of other stainless steels. The reason for the low ASR is that the contact resistance between the Pt paste and the oxide scale is reduced due to the plate-like shape of the $Cr_2O_3$(s). However, the acceptable ASR level is considered to be below 100 $m{\Omega}cm^2$ after 40,000 h of use. To further improve the electrical conductivity of the thermally grown oxide on stainless steels, the Co layer was deposited on the stainless steel by means of an electroless deposition method; it was then thermally oxidized to obtain the $Co_3O_4$ layer, which is a highly conductive layer. With the increase of the Co coating thickness, the ASR value decreased. For Co deposited STS444 with 2 ${\mu}m$hickness, the measured ASR at $800^{\circ}$ after 300 h oxidation is around 10 $m{\Omega}cm^2$, which is lower than that of the STS446M, which alloy has a lower ASR value than that of the non-coated STS. The reason for this improved high temperature conductivity seems to be that the Mn is efficiently diffused into the coating layer, which diffusion formed the highly conductive (Mn,Co)$_3O_4$ spinel phases and the thickness of the $Cr_2O_3$(S), which is the rate controlling layer of the electrical conductivity in the SOFC environment and is very thin

Effect of SRA on Hysteresis and Eddy Current Components of Iron Loss in Non-Oriented Steels (무방향성 전기 강판 철손의 자기 이력 손실과 와전류 손실에 미치는 SRA의 영향)

  • 송창열;강이국;신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.208-211
    • /
    • 1995
  • This proper focuses on results of relative permeability(${\mu}$$\sub$r/), core loss(W) and magnetic induction [B] measurements on some of the most commonly used core materials(PN-18, 20, 30, 60, Pohang Iron '||'&'||' Steel Co., Ltd.) In case of Stress Relief Annealing(SRA). Results of magnetic induction[B] showed weak variations but core lass reduced strongly after SRA Core loss reduced from 3.071 ∼7.819(W/kg) and 11.377~3.988[W/kg] to 2.88~5.492[W/kg] and 1.213~2.134[W/kg] at 1.5[T] 50 Hz and 1.0 [T] 50Hz respectively after SRA. This SRA process leads to significant changes In magnetic properties and core loss of non-oriented silicon steel sheet.

  • PDF

Core loss Analysis of Permanent Magnet Generator Considering the operating Speed for Wind Power Application (회전속도를 고려한 영구자석형 풍력발전기의 철손 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.115-117
    • /
    • 2007
  • Core loss form a larger proportion of the total losses. This paper deals with the analysis on the core loss in PM generator considering the operating speed for wind power application. Using the data information from a manufacturer and nonlinear curve fitting, this paper investigates the magnetic behavior and its core losses in the stator core using the electrical steels.

  • PDF

Mechanical Characteristics of Crystalline Carbon Nitride Films Grown by Reactive Sputtering (반응성 스퍼터링으로 성장된 결정성 질화탄소막의 기계적 특성)

  • 이성필;강종봉
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Carbon nitride thin films were deposited by reactive sputtering for the hard coating materials on Si wafer and tool steels. When the nitrogen content of carbon nitride film on tool steel is 33.4%, the mean hardness and elastic modulus are 49.34 GPa and 307.2 GPa respectively. The nitrided or carburised surface acts as the diffusion barrier which shows better adhesion of carbon nitride thin film on the steel surface. To prevent nitrogen diffusion from the film, steel substrate can be saturated by nitrogen forming a Fe$_3$N layer. The desirable structure at the surface after carburising is martensite, but sometimes, due to high carbon content an proeutectoid Fe$_3$C structure may form at the grain boundaries, leaving the overall surface brittle and may cause defects.