• Title/Summary/Keyword: electrical resistivity test

Search Result 284, Processing Time 0.026 seconds

Application of SP monitoring to the analysis of anisotropy of aquifer (대수층 이방성 분석을 위한 자연전위 모니터링의 적용)

  • 송성호;용환호
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.49-58
    • /
    • 2003
  • To analyze the anisotropic characteristics of fractured aquifer, variations of streaming potential were measured during and after pumping over several wells at the two test sites. Surface electrical resistivity survey, normal resistivity logging, and slug test were performed at the wells to identify the hydrogeological structure. Applying the results to the recently suggested model, the aquifer of the two test sites showed confined characteristics. Anisotropic direction appeared in using equi-potential maps from self-potential monitoring results matched well with the results of the hydrogeological test. The self-potential monitoring method adopted in this study would be useful for providing a more reliable information on the anisotropy of aquifer in the pumping test at single well.

Resistivity Protecting analysis due to test survey result (시험탐사 결과에 따른 전기비저항 탐사 분석)

  • Kim, Jae-Hong;Hong, Won-Pho;Park, Chul-Sook;Im, En-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1285-1289
    • /
    • 2008
  • Increasing the flood control capacity's link that is enforcing to existing dam by unusual change of weather, While build planing construction by exiting spillway of tunnel type to dam, could know that part bed rock is formed as is different with design. Grasped topography of research area and geology state to definite distribution aspect of different bed rock, Place that achieved Surface geological Survey and correct Survey is difficult in some section enforced Electrical resistivity dipole-dipole investigation. Grasped stratigraphy distribution confirmation and fracture or weathering zone making out siding 2D-Resistivity Electrical resistivity diagram and Reverse analysis diagram, examining closely soil weathered rock rock's distribution state, established stability countermeasure plan

  • PDF

Evaluation of Toughness Degradation of 1Cr-1Mo-0.25V Steel by Electrical Resistivity (전기비저항을 이용한 1Cr-1Mo-0.25V강의 인성열화도 평가)

  • Nahm, S.H.;Yu, K.M.;Kim, A.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.10-16
    • /
    • 1998
  • Remaining life of turbine rotors with a crack can be assessed by the fracture toughness of the aged rotors at service temperature. DC potential drop measurement system was constructed in order to evaluate material toughness nondestructively. Test material was 1Cr-1Mo-0.25V steel used widely for turbine rotor material. Seven kinds of specimen with different degradation levels were prepared according to isothermal aging heat treatment at $630^{\circ}C$. Electrical resistivity of test material was measured at room temperature. It was observed that material toughness and electrical resistivity decreased with the increase of degradation. The relationship between fracture toughness and electrical resistivity was investigated. Fracture toughness of a test material may be determined nondestructively by electrical resistivity.

  • PDF

The Improvement of Collection Efficiency of Electrostatic Precipitator (전기 집진기의 집진 효율 향상에 관한 연구)

  • Ahn, Kook-Chan;Kim, Bong-Hwan;Lee, Gwang-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.25-30
    • /
    • 2002
  • This paper demonstrates the effects of dust electrical resistivity on electrostatic precipitability. The effects of gas temperature, velocity and humidity on the collection efficency were considered by used of coal fly ashes from fluidized bed combustion boiler. The experiments for collection efficiency were carried out in the pilot plant. The ashes which have non-spherical geometry and high electrical resistivity were used. Electrical resistivity is an important property for the collection efficiency in the electrostatic precipitators. Fly ash resistivity as a function of temperature up $350{\circ}C$ and water concentration(up to 15%) has been experimentally investigated using the resistivity test equipment consisted of the movable electrode, dust cup, and furnace. As the resistivity of fly ash in the operating temperature($150{\circ}C$) of an electrostatic precipitator was measured higher than $1010{\Omega}{\cdot}$cm, flue gas conditioning in the electrostatic precipitator to reduce the resistivity of fly ash is required.

Application of Temperature-compensated Resistivity Probe in the Field (온도보상형 전기저항 프로브의 현장 적용성 평가)

  • Jung, Soon-Hyuck;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.117-125
    • /
    • 2011
  • The practical use of the electrical resistivity, which can makes the acquirement of the high resolution data in specific area, is increased in order to obtain a reasonable data for a ground investigation. The objective of this study is development of TRPF(Temperature-compensated Resistivity Probe for Field test), and an application in the field test for obtaining a reliable electrical resistivity value about considering the temperature effects. Temperature sensor is attached at 15mm, 30mm, 90mm below from the cone tip in consideration with the results of temperature transient process of cone probe and safety, and the angle of cone tip is $60^{\circ}$ for geometrical reason and minimizing the disturbance during the penetration test. Diameter of the cone probe is equally 35.7mm and penetration rate is 2 cm/sec for a comparison with standard cones such as CPT and SPT, and others. The temperature change is instantly observed around $4^{\circ}C$ when touching the ground, and the comparing results among the other cones indicates that the temperature compensation should be conducted in the ground survey using the electrical resistivity. This study shows that the necessity of temperature effects compensation during penetration test through the development and field verification of TRPF (Temperature-compensated Resistivity Probe for Field test).

Field Elastic Wave and Electrical Resistivity Penetrometer for Evaluation of Elastic Moduli and Void Ratio (탄성계수 및 간극비 평가를 위한 현장 관입형 탄성파 및 전기비저항 프로브)

  • Yoon, Hyung-Koo;Kim, Dong-Hee;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.85-93
    • /
    • 2010
  • The shear stiffness has become an important design parameter to understand the soil behavior. In particular, the elastic moduli and void ratio has been considered as important parameters for the design of the geotechnical structures. The objective of this paper is the development of the penetration type Field Velocity and Resistivity Probe (FVRP) which is able to assess the elastic moduli and void ratio based on the elastic wave velocities and electrical resistivity. The elastic waves including the compressional and shear wave are measured by piezo disk elements and bender elements. And the electrical resistivity is measured by the resistivity probe, which is manufactured and installed at the tip of the FVRP. The penetration tests are carried out in calibration chamber and field. In the laboratory calibration chamber test, after the sand-clay slurry mixtures are prepared and consolidated. The FVRP is progressively penetrated and the data are measured at each 1 cm. The field experiment is also carried out in the southern part of Korea Peninsular. Data gathering is performed in the depth of 6~20 m at each 10 cm. The elastic moduli and void ratio are estimated based on the analytical and empirical solutions by using the elastic wave velocities and electrical resistivity measured in the chamber and field. The void ratios based on the elastic wave velocities and the electrical resistivity are similar to the volume based void ratio. This study suggests that the FVRP, which evaluates the elastic wave velocities and the electrical resistivity, may be a useful instrument for assessing the elastic moduli and void ratio in soft soils.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

The Volume Resistivity properties due to the Curing Condition of Silicone Gel for Power Semiconductor (실리콘 젤의 경화조건에 따른 체적고유저항 특성)

  • Song, Byung-Gi;Cho, Kyung-Soon;Shin, Jong-Yeol;Kim, Lee-Doo;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.270-272
    • /
    • 1997
  • In order to a study on the electrical properties of silicone gel due to the curing condition, the volume resistivity test is researched. For experiment, we have made up several samples of different curing temperature and time such as 1[H], 2[H] at 125[$^{\circ}C$], 150[$^{\circ}C$], 160[$^{\circ}C$], 170[$^{\circ}C$], 180[$^{\circ}C$]. A measurement of volume resistivity using the VMG-1000 highmegohm meter is recorded after 10 minutes when the each voltage, and DC 500[V] and 1000[V] is applied. A coaxial cylindrical liquid electrode to measure volume resistivity of specimen is used, and its geometric capacitance is 2[pF]. As a result of the experiment, the electrical properties of specimen cured at 170[$^{\circ}C$] for 2[H] is superior.

  • PDF

Predicting Damage in a Concrete Structure Using Acoustic Emission and Electrical Resistivity for a Low and Intermediate Level Nuclear Waste Repository

  • Hong, Chang-Ho;Kim, Jin-Seop;Lee, Hang-Lo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.

Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method (전기비저항 모니터링 방법을 이용한 충적층 지하수위 변동 감지)

  • 김형수
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1997
  • Electrical resistivity monitoring methods were adopted to detect groundwater table change in alluvium. Numerical modelling test using finite element method(FEM) and field resisfivity monitoring were conducted in the study. The field monitoring data were acquired in the alluvium deposit site in Jeong-Dong Ri, Geum River where pumping test had been conducted continuously for 20 days to make artificial changes of groundwater table. The unit distance of the electrode array was 4m and 21 fixed electrodes were applied in numerical calculation and field data acquisition. "Modified Wenner" and dipole-dipole array configurations were used in the study. The models used in two-dimensional numerical test were designed on the basis of the simplifving geological model of the alluvium in Jeong Dong Ri, Geum River. Numerical test results show that the apparent resistivity pseudosections were changed in the vicinity of the pootion where groundwater table was changed. Furthermore, there are some apparent resistivity changes in the boundary between aquifer and crystalline basement rock which overlays the aquifer. The field monitoring data also give similar results which were observed in numerical tests. From the numerical test using FEM and field resistivity monitoring observations in alluvium site of Geum River, the electrical monitoring method is proved to be a useful tool for detecting groundwater behavior including groundwater table change. There are some limitations, however, in the application of the resistivity method only because the change of groundwater table does not give enough variations in the apparent resistivity pseudosections to estimate the amount of groundwater table change. For the improved detection of groundwater table changes, it is desirable to combine the resistivity method with other geophysical methods that reveal the underground image such as high-resolution seismic and/or ground penetrating radar surveys.

  • PDF