• Title/Summary/Keyword: electrical lengths

검색결과 245건 처리시간 0.022초

결함접지구조와 가유전체 기판구조를 결합한 전송선로의 설계 (Design of a Transmission Line using Defected Ground Structure and Artificial Dielectric Substrate)

  • 권경훈;임종식
    • 한국산학기술학회논문지
    • /
    • 제14권7호
    • /
    • pp.3474-3481
    • /
    • 2013
  • 본 논문에서는 결함접지구조와 가유전체 기판구조를 이용하여 새로운 초고주파 대역 전송선로 구조가 제안된다. 결함접지구조는 전송선로의 단위길이당 등가의 인덕턴스를 증가시켜 동일한 선폭일 때 전송선로의 특성 임피던스를 키우면서 선로의 길이를 줄여준다. 가유전체 기판구조는 전송선로의 단위길이당 등가의 커패시턴스를 증가시켜, 동일한 선폭일 때 전송선로의 특성 임피던스를 낮추면서 선로의 길이를 줄여준다. 따라서 결함접지구조와 가유전체 기판구조는 모두 전송선로의 길이를 줄이면서 선폭에 대해서는 상보적인 역할을 한다. 그러므로 두 구조가 결합되면 전송선로의 특성 임피던스는 크게 변하지 않은 채 길이만 더욱 줄일 수 있으므로, 초고주파 회로의 소형화에 크게 유리하다. 본 논문에서는 결함접지구조와 가유전체 기판구조를 모두 결합시킨 $35{\sim}100{\Omega}$ 전송선로를 설계하고, 실제로 제작 및 측정하여 그 결과를 제시하는데, 특성 임피던스의 예측값과 측정값이 잘 일치함을 보인다. 동일한 전기적 길이에 대하여 제안한 전송선로는 Fig.준형 마이크로스트립 전송선로에 비하여 불과 55.4~76.9% 물리적 길이를 갖는다.

Design, Analysis, and Equivalent Circuit Modeling of Dual Band PIFA Using a Stub for Performance Enhancement

  • Yousaf, Jawad;Jung, Hojin;Kim, Kwangho;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • 제16권3호
    • /
    • pp.169-181
    • /
    • 2016
  • This work presents a new method for enhancing the performance of a dual band Planer Inverted-F Antenna (PIFA) and its lumped equivalent circuit formulation. The performance of a PIFA in terms of return loss, bandwidth, gain, and efficiency is improved with the addition of the proposed open stub in the radiating element of the PIFA without disturbing the operating resonance frequencies of the antenna. In specific cases, various simulated and fabricated PIFA models illustrate that the return loss, bandwidth, gain, and efficiency values of antennas with longer optimum open stub lengths can be enhanced up to 4.6 dB, 17%, 1.8 dBi, and 12.4% respectively, when compared with models that do not have open stubs. The proposed open stub is small and does not interfere with the surrounding active modules; therefore, this method is extremely attractive from a practical implementation point of view. The second presented work is a simple procedure for the development of a lumped equivalent circuit model of a dual band PIFA using the rational approximation of its frequency domain response. In this method, the PIFA's measured frequency response is approximated to a rational function using a vector fitting technique and then electrical circuit parameters are extracted from it. The measured results show good agreement with the electrical circuit results. A correlation study between circuit elements and physical open stub lengths in various antenna models is also discussed in detail; this information could be useful for the enhancement of the performance of a PIFA as well as for its systematic design. The computed radiated power obtained using the electrical model is in agreement with the radiated power results obtained through the full wave electromagnetic simulations of the antenna models. The presented approach offers the advantage of saving computation time for full wave EM simulations. In addition, the electrical circuit depicting almost perfect characteristics for return loss and radiated power can be shared with antenna users without sharing the actual antenna structure in cases involving confidentiality limitations.

Synthesis and Characterization of Silver Vanadium Oxide as a Cathode for Lithium Ion Batteries

  • Nguyen, Van Hiep;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권3호
    • /
    • pp.139-142
    • /
    • 2016
  • β-AgVO3 nanorods have been successfully synthesized using a soft chemistry route followed by heat treatment. They were characterized by X-ray diffraction and field emission scanning electron microscopy, and their electrochemical properties were investigated using cyclic voltammetry, impedance spectra, and charge-discharge tests. The results showed that the smooth-surfaced nanorods are very uniform and well dispersed, with diameters of ~100-200 nm and lengths of the order of several macrometers. The nanorods deliver a maximum specific discharge capacity of 275 mAh g-1 at 30 mA g-1. They also demonstrated good rate capability with a discharge capacity at the 100th cycle of 51 mAh g-1.

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.

A 20-GHz Miniaturized Ring Hybrid Circuit Using TFMS on Low-Resistivity Silicon

  • Lee Sang-No;Lee Joon-Ik;Yook Jong-Gwan;Kim Yong-Jun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권2호
    • /
    • pp.76-80
    • /
    • 2005
  • In this paper, a miniaturized ring hybrid circuit is characterized based on a thin film microstrip (TFMS) on low-resistivity silicon. In order to obtain low-loss characteristics, a polyimide layer with 50 $\mu$m thickness is spin-coated onto the silicon to be used for the substrate. First, propagation characteristics of TFMS lines consisting of the ring hybrid circuit are presented. Then, a ring hybrid circuit based on TFMS is featured by employing the triple concentric circle approach for miniaturization. Triple concentric circle lines with $\lambda$$_{g}$/4 or 3$\lambda$$_{g}$/4 line lengths are implemented on the surface of the polyimide by circularly meandering to reduce the circuit size of the designed ring hybrid. Good agreement between measured and simulated results is obtained.

Analysis of Quantum Effects Concerning Ultra-thin Gate-all-around Nanowire FET for Sub 14nm Technology

  • 이한결;김성연;박재혁
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.357-364
    • /
    • 2015
  • In this work, we investigate the quantum effects exhibited from ultra-thin GAA(gate-all-around) Nanowire FETs for Sub 14nm Technology. We face designing challenges particularly short channel effects (SCE). However traditional MOSFET SCE models become invalid due to unexpected quantum effects. In this paper, we investigated various performance factors of the GAA Nanowire FET structure, which is promising future device. We observe a variety of quantum effects that are not seen when large scale. Such are source drain tunneling due to short channel lengths, drastic threshold voltage increase caused by quantum confinement for small channel area, leakage current through thin gate oxide by tunneling, induced source barrier lowering by fringing field from drain enhanced by high k dielectric, and lastly the I-V characteristic dependence on channel materials and transport orientations owing to quantum confinement and valley splitting. Understanding these quantum phenomena will guide to reducing SCEs for future sub 14nm devices.

  • PDF

초자기변형합금 Terfenol-D의 기초특성에 관한 연구 (A study on the fundamental characteristics of Giant Magnetostirictive Alloy, Terfenol-D)

  • 백창욱;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.186-188
    • /
    • 1994
  • Fundamental characteristics of Giant Magnetostrictive Alloy Terfenol-D$(Tb_{0.3}Dy_{0.7}Fe_{1.9\sim1.95})$ were measured by experiments. Magnetostrictions of Terfenol-D samples whose lengths are 15 and 25 mm have been measured under compressive stress from 0 to 14 MPa, when the applied magnetic field was up to 1200 Oe. The relationship between magnetostriction and field is shown graphically in the form of $H-{\lambda}$, curve. For the experiment, solenoid magnet and lever-arm-type stress equipment were designed and fabricated. The magnetostriction is measured by laser displacement measuring system and the stress applied to the sample is measured by load cell.

  • PDF

Dual-Transmission-Line Microstrip Equiripple Lowpass Filter with Sharp Roll-Off

  • Velidi, Vamsi Krishna;Sanyal, Subrata
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.985-988
    • /
    • 2011
  • A novel application of a dual-transmission line is proposed to design a lowpass filter (LPF). The proposed structure uses only transmission line elements to produce an equiripple LPF response with sharp roll-off. Design equations are derived using a lossless transmission line model. Controlling the electrical lengths, three transmission-zeros are realized in the stopband to obtain a sharp roll-off rate and wide stopband bandwidth. A single unit microstrip LPF with a 3-dB cut-off frequency at 1.0 GHz having a roll-off of 135 dB/GHz along with a stopband bandwidth of 69.5% is designed for validation.

Electrical Characteristics of Single-silicon TFT Structure with Symmetric Dual-gate for Kink Effect Suppression

  • Kang Ey-Goo;Lee Dae-Yeon;Lee Chang-Hun;Kim Chang-Hun;Sung Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권2호
    • /
    • pp.53-57
    • /
    • 2006
  • In this paper, a Symmetric Dual-gate Single-Si TFT, which includes three split floating n+ zones, is simulated. This structure drastically reduces the kink-effect and improves the on-current. This is due to the separated floating n+ zones, the transistor channel region is split into four zones with different lengths defined by a floating n+ region. This structure allows effective reduction in the kink-effect, depending on thy length of the two sub-channels. The on-current of the proposed dual-gate structure is 0.9 mA, while that of the conventional dual-gate structure is 0.5 mA, at both 12 V drain and 7 V gate voltages. This result shows an 80% enhancement in on-current. In addition, the reduction of electric field in the channel region compared to a conventional single-gate TFT and the reduction of the output conductance in the saturation region, is observed. In addition, the reduction in hole concentration, in the channel region, in order for effectively reducing the kink-effect, is also confirmed.

A Numerical Approach for Lightning Impulse Flashover Voltage Prediction of Typical Air Gaps

  • Qiu, Zhibin;Ruan, Jiangjun;Huang, Congpeng;Xu, Wenjie;Huang, Daochun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1326-1336
    • /
    • 2018
  • This paper proposes a numerical approach to predict the critical flashover voltages of air gaps under lightning impulses. For an air gap, the impulse voltage waveform features and electric field features are defined to characterize its energy storage status before the initiation of breakdown. These features are taken as the input parameters of the predictive model established by support vector machine (SVM). Given an applied voltage range, the golden section search method is used to compute the prediction results efficiently. This method was applied to predict the critical flashover voltages of rod-rod, rod-plane and sphere-plane gaps over a wide range of gap lengths and impulse voltage waveshapes. The predicted results coincide well with the experimental data, with the same trends and acceptable errors. The mean absolute percentage errors of 6 groups of test samples are within 4.6%, which demonstrates the validity and accuracy of the predictive model. This method provides an effectual way to obtain the critical flashover voltage and might be helpful to estimate the safe clearances of air gaps for insulation design.