• 제목/요약/키워드: electrical field

검색결과 8,646건 처리시간 0.032초

Basic Properties of Micropump with Magnetic Micromachine

  • Hisatomi, Shinichi;Yamazaki, Aya;Ishiyama, Kazushi;Sendoh, Masahiko;Yabukami, Shin;Agatsuma, Shigeto;Morooka, Keiko;Arai, Ken Ichi
    • Journal of Magnetics
    • /
    • 제12권2호
    • /
    • pp.84-88
    • /
    • 2007
  • A micropump with spiral-type magnetic micromachine was fabricated. When a rotating magnetic field was applied, the machine rotated and pumped a surrounding liquid. We experimentally examined the basic properties of this pump. We found that the pressure and the flow rate could be controlled by the rotating frequency, and this pump could work under wide range kinematic viscosity. In addition, we proposed a disposable pump system using the machine. When a plate installed a fluid channel and the machine was set on a stage for generating a rotating magnetic field, the machine worked as the pump.

Analysis and Comparison of a Permanent-Magnet DC Motor with a Field-Winding DC Motor

  • Kiyoumarsi, Arash
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.370-376
    • /
    • 2009
  • The influence of magnetic saturation on electromagnetic field distribution in both a permanent-magnet direct-current (PMDC) motor and a field-winding (wound-field) direct-current (FWDC) motor, with the same output mechanical power, has been studied. In this paper, an approximate analytical method and time-stepping Finite Element Method (FEM) are used for prediction of Back-EMF and electromagnetic torque. No-load and rotor-lucked conditions, according to experimental measurements, and the FEM and analytical method studies of the motors have been considered. A sensitivity analysis has also been successfully accomplished on the major design parameters that affect motor performance. At last, these two DC motors are compared, in spite of their differences, on the basis of measured output characteristics.

LDD MOSFET 채널 전계의 특성해석 (Characterization of Channel Electric Field in LDD MOSFET)

  • 박민형;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.363-367
    • /
    • 1988
  • A simple analytical model for the lateral channel electric field in gate - offset structured Lightly Doped Drain MOSFET has been developed. The model's results agree well with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field as function of drain and gate bias conditions and process, design parameters. Advantages of analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate / drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot - electron phenomena, individually. We are able to find the optimum doping concentration of LDD minimizing the peak electric field and hot - electron effects.

  • PDF

Effective Channel Mobility of AlGaN/GaN-on-Si Recessed-MOS-HFETs

  • Kim, Hyun-Seop;Heo, Seoweon;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권6호
    • /
    • pp.867-872
    • /
    • 2016
  • We have investigated the channel mobility of AlGaN/GaN-on-Si recessed-metal-oxide-semiconductor-heterojunction field-effect transistors (recessed-MOS-HFET) with $SiO_2$ gate oxide. Both field-effect mobility and effective mobility for the recessed-MOS channel region were extracted as a function of the effective transverse electric field. The maximum field effect mobility was $380cm^2/V{\cdot}s$ near the threshold voltage. The effective channel mobility at the on-state bias condition was $115cm^2/V{\cdot}s$ at which the effective transverse electric field was 340 kV/cm. The influence of the recessed-MOS region on the overall channel mobility of AlGaN/GaN recessed-MOS-HFETs was also investigated.

YBaCuO계 초전도소결체 자기소자 (Preparation of Magnetic Field Sensor with YBaCuO Superconducting Ceramics)

  • 이상헌
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.109-111
    • /
    • 2000
  • A magnetic field sensor is fabricated with superconducting ceramics of Y-Ba-Cu-O system. The prepared material shows the superconductivity at about 95K. The sensor at liquid nitrogen temperature shows the increase in electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor is changed from zero to a value more than 100$\mu$V by the applied magnetic field. The change in electrical resistance depends on magnetic field. The sensitivity of this sensor is 2.9 ohm/T. The sensing limit is about $1.5\times$$10^{-5}$ (=1.5$\times$$10^{-1}$ G). The increase in electrical resistance by the magnetic field is ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material.

  • PDF

Magnetic Sensor by Using Magnetic Effect in YBaCuO Superconductor

  • 이상헌;김찬중
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.69-71
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of YBaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually the voltage drop across the sensor was changed from zero to a value more than 100 $mutextrm{V}$ by the applied magnetic field. The change in electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about $1.5\times$10$^{-5}$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

3,000 V급 초접합 필드링을 갖는 초접합 IGBT 제작에 관한 연구 (The Fabrication of Super Junction IGBT with 3,000 V Class Super Junction Field Rings)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제28권9호
    • /
    • pp.551-554
    • /
    • 2015
  • This paper was analyzed electrical characteristics of super junction IGBT with super junction field rings. As a result of super junction IGBT with super junction field rings, we obtained 3,300 V breakdown voltage and good thermal characteristics. we obtained shrinked chip size because field ring was decreased than field ring for conventional IGBT, too. And we fabricated super junction IGBT with super junction field rings. As a result of measuring fabricated chip, we obtained 3,300 V breakdown voltage. The fabricated devices were replaced thyristos using high voltage conversion, sufficiently.

보리새우의 전기 어법 (ELECTRICAL FISHING METHOD OF PENAEUS JAPONICUS BATE)

  • 고관서;김상한;윤갑동
    • 한국수산과학회지
    • /
    • 제5권4호
    • /
    • pp.115-120
    • /
    • 1972
  • The data Presented in this Paper, on the body and Jumping voltage of Penaeus japonicus BATE, are part of a current study on shrimp behaviour in order to improve fishing efficiency of the fishing gear. The experiments concerning electrical stimuli was mostly carried out at the Marine Laboratory of Busan Fisheries College in 1972. The following are the results obtained from the present investigations : 1. When the voltages between a pair of electrodes were fixed constant, the voltage drops between them showed almost constant electrical field. 2. Threshold voltages of the animals varied with body direction to the electrical field, i. e., 200 -500 mV for parallel, 500-1400 mV for vertical and 300-800 mV for diagonal ($45^{\circ}$) settings. 3. Jumping voltages of the animals also varied with the body direction to the electrical field; i. e., 250-1000 mV for parallel, 800-2500 mV for vertical and 400-1300 mV for diagonal settings. 4. The shrimp, in general, were more sensitive to the electrical stimuli when oriented to the cathode rather than the anode. 5. Jumping voltages decreased when the interrupted current was applied to the animals, i. e., less than 200 mV for paralled and 500mV for vertical direction of the body to the electrical field.

  • PDF

1,200 V급 Trench Gate Field Stop IGBT 소자의 전기적 특성 향상 방안에 관한 연구 (A Study on the Electrical Characteristics with Design Parameters in 1,200 V Trench Gate Field Stop IGBT)

  • 금종민;정은식;강이구;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.253-260
    • /
    • 2012
  • IGBT (insulated gate bipolar transistor) have received wide attention because of their high current conduction and good switching characteristics. To reduce the power loss of IGBT, the on state voltage drop should be lowered and the switching time should be shorted. However, there is Trade-off between the breakdown voltage and the on state voltage drop. To achieving good electrical characteristics, field stop IGBT (FS IGBT) is proposed. In this paper, 1,200 V planar gate non punch-through IGBT (planar gate NPT IGBT), planar gate FS IGBT and trench gate FS IGBT is designed and optimized. The simulation results are compared with each three structures. In results, we optain optimal design parameters and confirm excellence of trench gate FS IGBT. Experimental result by using medici, shows 40% improvement of on state voltage drop.

역전적세배위의 형성에 관한 실채연 (An Experimental Study on the Formation of Reversed Field Configuration)

  • 김동필;이기호
    • 대한전기학회논문지
    • /
    • 제35권12호
    • /
    • pp.579-585
    • /
    • 1986
  • A Reversed Field Pinch(RFP) Plasma automatically forms the reversed field configuration in a stable state by the self-reversal phenomenon. But this process of formation of the reversed field configuration has a problem that instabilities occur. In order to form a RFP configuration in a stable state by removing instabilities, this experimental study attempts to restrain Toroidal magnetic fields and supplement Toroidal flux by employing high frequency rotating fields. As a result, the reversed magnetic field configuration is stably formed in a short period because high frequency rotating fields can deflect poloidal currents and produce magnetic fields in the Toroidal direction.