• Title/Summary/Keyword: electrical explosion of wire

Search Result 55, Processing Time 0.026 seconds

Evaluation of Cu nano-colloid prepared by electrical wire explosion in liquid phase (액중 전기선폭발법으로 제조된 구리 나노콜로이드의 특성 평가)

  • Yoon, Jae-Cheol;Yang, Sang Sun;Yu, Ji-Hun
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 2010
  • Cu nano-colloid was prepared by wire electric explosion process under de-mineralized water and anhydrous ethanol. To control the properties of Cu nano-colloid, experimental conditions such as diameter of Cu wire and applied voltage were changed. The optimal Cu nano-colloid was prepared when the 0.1mm diameter of Cu wire with the applied voltage of 2000 V was used. The shape of Cu particles in colloid was spherical and the XRD result revealed that the phase of Cu particles was cubic phase. About 20nm Cu nanoparticles with high crystallinity were successfully prepared using wire explosion process under anhydrous ethanol and they showed more than 100 hours dispersion stability.

Preparation of the Metallic Nanopowders by Wire Explosion in Liquid Media (액중 전기폭발에 의한 금속 나노분말 제조)

  • Cho, Chu-Hyun;Kim, Byung-Geol;Park, Sang-Ha;Kang, Chung-Il;Lee, Hong-Sik;Im, Geun-Hie
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.452-455
    • /
    • 2006
  • The technology of wire explosion have been used to product nanopowders. A new concept was proposed to produce metallic nanosized powders, which is wire explosion in liquid media. We have exploded the Ag or Cu wires of diameter of O.3mm, 40mm long, in the de-ionized water or acetone, respectively. Electrical energy of 1.1kJ was stored in 10uF capacitor and released to the wires through a triggered spark gap switch. The process was observed by high-speed camera. Those images showed that the powders were generated by vapor condensation in the shell formed by shock wave in the water. The particles were directly dispersed into the water with collapse of the shell. The sizes of Ag and Cu nanopowders were evaluated to 35nm and 17nm, respectively.

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method

  • Lee, A-Young;Lee, Gwang-Yeob;Oh, Hye-Ryeong;Kim, Hyeon-Ah;Kim, Song-Yi;Lee, Min-Ha
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.409-413
    • /
    • 2016
  • Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.

Fabrication of Cu-Zn Alloy Nano Powders by Wire Explosion of Electrodeposited Wires (도금선재의 전기선폭발을 이용한 Cu-Zn 합금 나노분말 제조)

  • Kim, Won-Baek;Park, Je-Shin;Suh, Chang-Yeul;Lee, Jae-Chun;Oh, Yong-Jun;Mun, Jeong-Il
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.38-43
    • /
    • 2007
  • Cu-Zn alloy nano powders were fabricated by the electrical explosion of Zn-electroplated Cu wire along with commercial brass wire. The powders exploded from brass wire were composed mainly of ${\alpha},{\beta},\;and\;{\gamma}$ phases while those from electroplated wires contained additional Zn-rich phases as ${\varepsilon}$, and Zn. In case of Zn-elec-troplated Cu wire, the mixing time of the two components during explosion might not be long enough to solidify as the phases of lower Zn content. This along with the high vapor pressure of Zn appears to be the reason for the observed shift of explosion products towards the high-Zn phases in electroplated wire system.

Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics (액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성)

  • Koo, Hye Young;Yun, Jung-Yeul;Yang, Sangsun;Lee, Hye-Moon
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

Synthesis of Nanosized Powders by Wire Explosion (전기폭발(wire explosion)에 의한 나노분말 제조)

  • Cho, Chu-Hyun;Rim, Geun-Hie;Lee, Hong-Sik;Jiang, WeiHua
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2057-2059
    • /
    • 2005
  • Silver nanosized powder have been synthesized using wire explosion technology. The discharge system of 10kw (10uF, 20kV, 0.5 shots/s) was set up for mass production of 300g/h. The high purity silver powder was collected and separated by cyclone and fabric filters.

  • PDF

The Fabrication of Al-Cu Alloy Nano Powders by a New Method Combining Electrodeposition and Electrical Wire Explosion (전기도금법과 전기선폭발법을 이용한 Al-Cu 합금 나노분말제조)

  • Park Je-Shin;Suh Chang-Youl;Chang Han-Kwon;Lee Jae-Chun;Kim Won-Baek
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.187-191
    • /
    • 2006
  • Al-Cu alloy nano powders were produced by the electrical explosion of Cu-plated Al wires. The composition and phase of the alloy could be controlled by varying the thickness of Cu deposit on Al wire. When the Cu layer was thin, Al solid solution and $CuAl_2$ were the major phases. As the Cu layer becomes thicker, Al diminished while $Al_4Cu_9$ phase prevailed instead. The average particle size of Al-Cu nano powders became slightly smaller from 63 nm to 44 nm as Cu layer becomes thicker. The oxygen content of Al-Cu powder decreased linearly with Cu content. It is well demonstrated that the electrodeposition combined with wire explosion could be simple and economical means to prepare variety of alloy and intermetallic nano powders.

Spark Plasma Sintering of the Ni-graphite Composite Powder Prepared by Electrical Explosion of Wire in Liquid and Its Properties

  • Thuyet-Nguyen, Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.14-24
    • /
    • 2020
  • In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Ni-graphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

Cu-Ni-P Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선폭발법에 의한 Cu-Ni-P 합금 나노 분말 제조)

  • Kim, Won-Baek;Park, Je-Shin;Suh, Chang-Youl;Lee, Jae-Chun;Kim, Jung-Hwan;Oh, Yong-Jun
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.108-115
    • /
    • 2007
  • Cu-Ni-P alloy nano powders were fabricated by the electrical explosion of electroless Ni plated Cu wires. The effect of applied voltage on the explosion was examined by applying pulse voltage of 6 and 28 kV, The estimated overheating factor, K, were 1.3 for 6 kV and 2.2 for 28 kV. The powders produced with pulse voltage of 6 kV were composed of Cu-rich solid solution, Ni-rich solid solution, and $Ni_3P$ phase. While, those produced with 28 kV were complete Cu-Ni-P solid solution and small amount of $Ni_3P$ phase. The initial P content of 6.5 at.% was reduced to 2-3 at.% during explosion due to its high vapour pressure.