• Title/Summary/Keyword: electrical and optical properties

Search Result 2,227, Processing Time 0.027 seconds

Influence of O2-Plasma Treatment on the Thin Films of H2 Post-Treated BZO (ZnO:B) (수소 플라즈마 처리된 BZO 박막에 산소 플라즈마의 재처리 조건에 따른 BZO 박막 특성)

  • Yoo, H.J.;Son, C.G;Yoo, J.H.;Park, C.K.;Kim, J.S.;Park, S.G.;Kang, H.D.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.275-280
    • /
    • 2010
  • The influence of $O_2$-plasma treatment on $H_2$ post-treated BZO (ZnO:B) thin film using MOCVD (Metal-Organic Chemical Vapor Deposition) are investigated. An $O_2$-plasma treatment of the $H_2$ post-treated BZO thin films resulted in XRD peak of (100), (101) and (110). Also, electrical properties resulted in an increase in sheet resistance and work function. The weighted optical transmittance and haze at 300~1,100 nm of BZO thin films with $O_2$-plasma treatment on the $H_2$ post-treatment show approximately 86% and 15%, respectively.

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

Investigation on the optical, structural and electrical properties of the RF sputtered layers obtained from CuInSe2 single precursors (CuInSe2 단일전구체에서 스퍼터링된 박막의 광학적, 구조적 및 전기적 특성평가)

  • Jeong, Chaehwan;Kim, Saerok;Kim, Jinhyeok;Kim, Kwangbok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.78.2-78.2
    • /
    • 2010
  • Cu(In,Ga)Se2 (CIGS)박막태양전지는 간단한구조와 가격경쟁력 및 고효율화 가능성에 대한 기대감에 의해 많은 연구가 수행되어오고 있다. 특히 높은 흡수계수와 적절한 밴드갭, 큰 결정크기와 같은 물질의 특성들이 장점으로 작용하고 있기 때문이다. 또한 CIGS박막태양전지는 다른 태양전지에 비해 광열화가 적다는 장점도 가지고 있다. CIGS 박막은 CuInSe2내의 In 사이트에 Ga을 도핑함으로서 형성이 되는데 그때의 밴드갭은 약 1.4eV이며 이를 형성하기 위해 많은 방법들이 제안되고 있는데, CIGS박막 형성 시 가장 중요시 여겨야 될 인자는 구성원소로부터 최적화된 조성비를 찾는 것이다. 이러한 관점에서 볼때 evaporation법이나 sputtering법같은 진공방식의 공정법이 비진공방식에 비해 최적의 조성비를 찾는 것이 수월할 것으로 생각된다. selenization을 하기전에, 동시증착이나 다층박막형성을 통해 Cu-In-Se의 조합이 일반적으로 이루어진다. 어떤방법이든 Se의 부가적인 공급이 이루어지는데 시작 전구체의 조합에서 그 해법을 제시하는 것에 대한 논의가 많이 부족한 현실로서, CuInSe2의 단일전구체에 의한 박막형성과 특성평가에 대해 구체적인 논의가 필요하다. 본 실험에서는 Cu-In-Se 전구체를 CuInSe2 단일 타겟에서부터 RF 마그네트론 스퍼터링법을 이용하여 박막증착을 하여 Se의 Rapid Thermal Process(RTA)법을 통해 Se이 순차적으로 공급되었다. 이때 형성되는 박막의 태양전지 흡수층 적용을 위한 광학적, 전기적 및 구조적에 대한 논의된다. Soda lime glass(SLG)와 Corning 1737 유리를 기판으로 하여 아세톤-에탄올을 이용, 초음파세척을 실시하였다. 스퍼터 공정을 하기전에 흡착된 물분자를 제거하기 위하여 약 30분간 $120^{\circ}C$로 열을 가해주었으며, 공정을 위한 총 아르곤 가스의 양은 약 50sccm이며 이때의 공정압력은 20mtorr로 고정하였다. 우선 RF power와 기판온도에 따른 단일전구체 형성을 관찰하기 위하여 각각 30~80W, RT~$400^{\circ}C$로 변화를 주어 박막을 형성한 후 모든 sample에 대하여 $500^{\circ}C$분위기에 effusion cell을 이용하여 Se 분위기에서 결정화를 실시하였다. 샘플의 두께는 Surface profiler로 측정하였고 단면은 전자주사현미경으로 관찰되었다. 동시에 SEM이미지를 통하여 morphology와 grain size 및 EDX를 통하여 조성분석을 하였다. 밴드갭, 투과율 및 흡수계수는 UV-VIS-NIR분광분석법을 통하여 수행되었으며, 전기적 특성분석을 위해 4-point-probe와 Hall effect측정을 수행하였다. 공정변수에 따른 단일타겟으로 얻어 결정화된 CuInSe2박막의 자세한 결과와 논의에 대하여 발표한다.

  • PDF

Fabrication and Characterization of $CuInSe_2$Thin Films from $In_2Se_3$ and$Cu_2Se$Precursors ($In_2Se_3$$Cu_2Se$를 이용한 $CuInSe_2$박막제조 및 특성분석)

  • Heo, Gyeong-Jae;Gwon, Se-Han;Song, Jin-Su;An, Byeong-Tae
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.988-996
    • /
    • 1995
  • CuInSe$_2$this films as a light absorber layer were fabricated by vacuum evaporation using In$_2$Se$_3$and Cu$_2$Se precursors and their properties were analyzed. Indium selenide films of 0.5${\mu}{\textrm}{m}$ thickness were first deposited by vacuum evaporation of In$_2$Se$_3$ on a Corning 7059 glass substrate. The films deposited at suscepor temperature of 40$0^{\circ}C$ showed a flat surface morphology with densely Packed grain structure. CuInSe$_2$films directly formed by evaporating Cu$_2$Se on the predeposited In$_2$Se$_2$films also showed a very flat surface when the susceptor temperature was $700^{\circ}C$. Cu$_2$Se, a second phase in the CuInSe$_2$film, was removed by evaporating additional In$_2$Se$_3$on the CuInSe$_2$film at $700^{\circ}C$. The grain size of 1.2${\mu}{\textrm}{m}$ thick CuInSe$_2$, film was about 2${\mu}{\textrm}{m}$ and the film had a (112) preferred orientation. As the amount of deposited In$_2$Se$_3$increased, the electrical resistivity of CuInSe$_2$films increased because of the decrease of hole concentration. But the optical band gap was almost constant at the value of 1.04eV, The CuInSe$_2$film grown on a Mo/glass substrate had a similar smooth microstructure compared to that on a glass substrate. A solar cell with ZnO/CdS/CuInSe$_2$/Mo structure may be realized based on the above CuInSe$_2$films.

  • PDF

Characteristics of Flexible Transparent Capacitive Pressure Sensor Using Silver Nanowire/PEDOT:PSS Hybrid Film (은나노와이어·전도성고분자 하이브리드 필름을 이용한 유연 투명 정전용량형 압력 센서의 특성)

  • Ahn, Young Seok;Kim, Wonhyo;Oh, Haekwan;Park, Kwangbum;Kim, Kunnyun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • In this paper, we developed a flexible transparent capacitive pressure sensor which can recognize X and Y coordinates and the size of force simultaneously by sensing a change in electrical capacitance. The flexible transparent capacitive pressure sensor was composed of 3 layers which were top electrode, pressure sensing layer, and bottom electrode. Silver nanowire(Ag NW)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid film was used for top and bottom flexible transparent electrode. The fabricated capacitive pressure sensor had a total size of 5 inch, and was composed of 11 driving line and 19 sensing line channels. The electrical, optical properties of the Ag NW/PEDOT:PSS and capacitive pressure sensor were investigated respectively. The mechanical flexibility was also investigated by bending tests. Ag NW/PEDOT:PSS exhibited the sheet resistance of $44.1{\Omega}/square$, transmittance of 91.1%, and haze of 1.35%. Notably, the Ag NW/PEDOT:PSS hybrid electrode had a constant resistance change within a bending radius of 3 mm. The bending fatigue tests showed that the Ag NW/PEDOT:PSS could withstand 200,000 bending cycles which indicated the superior flexibility and durability of the hybrid electrode. The flexible transparent capacitive pressure sensor showed the transmittance of 84.1%, and haze of 3.56%. When the capacitive pressure sensor was pressed with the multiple 2 mm-diameter tips, it can well detect the force depending on the applied pressure. This indicated that the capacitive pressure sensor is a promising scheme for next generation flexible transparent touch screens which can provide multi-tasking capabilities through simultaneous multi-touch and multi-force sensing.

Characteristics of Sn-doped β-Ga2O3 single crystals grown by EFG method (EFG 법으로 성장한 β-Ga2O3 단결정의 Sn 도핑 특성 연구)

  • Tae-Wan Je;Su-Bin Park;Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Yeon-Suk Jang;Won-Jae Lee;Yun-Gon Moon;Jin-Ki Kang;Yun-Ji Shin;Si-Yong Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The β-Ga2O3 has the most thermodynamically stable phase, a wide band gap of 4.8~4.9 eV and a high dielectric breakdown voltage of 8MV/cm. Due to such excellent electrical characteristics, this material as a power device material has been attracted much attention. Furthermore, the β-Ga2O3 has easy liquid phase growth method unlike materials such as SiC and GaN. However, since the grown pure β-Ga2O3 single crystal requires the intentionally controlled doping due to a low conductivity to be applied to a power device, the research on doping in β-Ga2O3 single crystal is definitely important. In this study, various source powders of un-doped, Sn 0.05 mol%, Sn 0.1 mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%-doped Ga2O3 were prepared by adding different mole ratios of SnO2 powder to Ga2O3 powder, and β-Ga2O3 single crystals were grown by using an edge-defined Film-fed Growth (EFG) method. The crystal direction, crystal quality, optical, and electrical properties of the grown β-Ga2O3 single crystal were analyzed according to the Sn dopant content, and the property variation of β-Ga2O3 single crystal according to the Sn doping were extensively investigated.

Growth and optical conductivity properties for MnAl2S4 single crystal thin film by hot wall epitaxy method (Hot Wall Epitaxy(HWE)법에 의한 MnAl2S4 단결정 박막 성장과 광전도 특성)

  • You, Sangha;Lee, Kijeong;Hong, Kwangjoon;Moon, Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.229-236
    • /
    • 2014
  • A stoichiometric mixture of evaporating materials for $MnAl_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MnAl_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MnAl_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.7920eV-5.2729{\times}10^{-4}eV/K)T^2/(T+786 K)$. In order to explore the applicability as a photoconductive cell, we measured the sensitivity (${\gamma}$), the ratio of photocurrent to dark current (pc/dc), maximum allowable power dissipation (MAPD) and response time. The results indicated that the photoconductive characteristic were the best for the samples annealed in S vapour compare with in Mn, Al, air and vacuum vapour. Then we obtained the sensitivity of 0.93, the value of pc/dc of $1.10{\times}10^7$, the MAPD of 316 mW, and the rise and decay time of 14.8 ms and 12.1 ms, respectively.