• Title/Summary/Keyword: electric shock current

Search Result 117, Processing Time 0.026 seconds

Grounding method for Improving of the Characteristics on Cable TV Transmission Line (케이블 TV 전송선로의 특성 개선을 위한 접지방식)

  • Hwang, Jong-Sun;Kim, Yeong-Min;Yeon, Che-Chin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.37-40
    • /
    • 2002
  • Ground connection began by experimenting lightning with the use of a kite and it means electric appliances, communication equipments, measuring instruments and so on connecting the Earth in order to flow away overcharged electricity. There are two kinds of earth connection: Power Ground and Signal Ground. Power Ground is for preventing an electric shock and in general there's no current in the connector. However in an accident, there's a quick flow of electricity out to the Earth. Signal Ground is not only for the safety of appliances but also for the safety of equipment operation. This paper is about connection for noise and interference reduce in order to prevent wrong operation and distortion of signal in the electrical appliances which can take place in cable TV.

  • PDF

Numerical Study of Electrohydraulic Forming Using an Arbitrary Lagrange-Eulerian Method (Arbitrary Lagrange-Eulerian 기법을 활용한 액중 방전 성형의 해석적 연구)

  • Woo, M.A.;Noh, H.G.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • Electrohydraulic forming (EHF) is a high-speed forming process that uses an electric arc discharge in water. Shock waves resulting from the electric arc discharge are propagated to the blank through water and the blank moves toward the die. Advantages of EHF include improved formability due to the high-speed process and reduction of the bouncing effect. In the current study, a numerical simulation of EHF was developed using LS-DYNA. In the simulation, the model for the electric arc was assumed as an adiabatic gas expansion and an Arbitrary Lagrange-Eulerian (ALE) multi material formulation was used to describe the interaction between the electric arc and the water. In order to model the Fluid-Structure Interaction (FSI), a coupling mechanism was used. The blank of Al 1100-O was simulated using shell elements. The results of the simulation showed that the blank was deformed due to the pressure propagation of water and the bouncing effect did not affect the formability of blank.

Design and Performance Evaluation of Surge Arrester for Loading in Railway Rolling Stock (전철 탑재용 피뢰기의 설계 및 성능평가)

  • Cho, H.G.;Han, S.W.;Lee, U.Y.;Kim, S.S.;Chang, T.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.74-77
    • /
    • 2000
  • The main objective of this paper is to design and test a new type of polymer ZnO surge arrester for AC power system of railroad vehicles. Metal oxide surge arrester for most electric power system applications, electric train and must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of ZnO elements in a surge arrester occurs due to flashover, fault short current flows through the arrester and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock. pressure rise, etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion. The main research works are focused on the structure design by finite element method, pressure relief of module, and studies of performance of surge arrester for electric railway vehicle.

  • PDF

Evaluation of Rail Leakage Current and Potential in DC Railway (직류철도의 레일누설전류 밑 전위평가)

  • Han, Moon-Seob;Jung, Ho-Sung;Kim, Ju-Rak;Kil, Gyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.161-166
    • /
    • 2009
  • DC feeding system is mainly floating but rail potential and leakage current are due to long parallelism between rails and ground, namely rail resistance and rail to ground conductance. Rail potential causes electric shock to human and rail leakage current causes electrolytic corrosion to nearby the buried metals. Therefore the design technologies to reduce, protect and monitor these effects are important in recent DC feeding system. Rail potential and leakage current are analysed based on propagation theory that is utilized. Monitoring and controlling rail leakage current is proposed in order to maintain rail resistance and rail to ground conductance.

Quench characteristics of YBCO thin films using magnetic field source for superconducting fault current limiters

  • Lee, B.W.;Park, K.B.;Kang, J.S.;Oh, I.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.11-14
    • /
    • 2004
  • YBCO thin films have good characteristics for current limiting materials due to compact size and high current carrying capability. But the irregularities and the extreme thin thickness of YBCO films cause some difficulties in simultaneous quench and thermal shock protection. In order to solve these problems, vertical magnetic field generated from solenoid coil was applied to the YBCO element. And also to minimize the inductance caused by the serial connection of magnetic field source with superconducting elements, magnetic field source was separated from the power lines adapting protective current transformer. In this study, electric field-current (E-I) and quench characteristics of YBCO films were analyzed both by electrical measuring method and observations of bubble propagation. From the experiment results, it was revealed that the magnetic fields generated by surrounding coil could induce the uniform quench distribution for all stripes of current limiting units and finally simultaneous quenches were realized in all serial connection of YBCO elements. In addition, the separation of magnetic field source form electrical network could be good solution for simultaneous quench of YBCO films without any unnecessary effect caused by serial connection.

A Study on the Identification of Electrical Materials by a Fire (화재로 인한 전기재료 감식에 관한 연구)

  • 박남신;홍진웅;조경순
    • Fire Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 1992
  • Over the last 100 years since the introduction of electricity, the nation has faced ever increasing demand for electricity as consequence of the rapid economic growth. The expanded consumption ratio for electricity naturally increased the possibility for electricity related accident mainly iii the form of electrically ignited fire and human injuries from electric shock. Under such circumstances, the presented study sets a focus on analysing the causes of the electrically related fire accidents happened in the nation over the last 10 years(in the 80's) to provide a scientific basis for identifying the cause of electric fires. Identification of the cause of fire ignited electrically may be approached either by studying accident related electrical properties or by investigating power instruments at the place of the accient. In the present paper, the former approach is taken especially on investigating the consequences of over current induced by short circuiting of high power instruments which is reported as the primary cause electricity related fire accidents. In order to provide reliability of the identification method, microscopic photograph's are taken for the cross sections of the electrical materials(fuse, wire, plug socket and plug) after being exposed to over current and heated by external means respectively. The results are consequently compared and analysed.

  • PDF

Physics of Solar Flares

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • In this talk we outline the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration which generates high-energy particles. The key physical processes producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in a current sheet to cause shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes that affect lower atmosphere such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been develops, where numerical simulation is a strong tool in that it can reproduce the time-dependent, nonlinear evolution of a flare. In this talk we review various models of a flare proposed so far, explaining key features of individual models. We introduce the general properties of flares by referring observational results, then discuss the processes of energy build-up, release, and transport, all of which are responsible for a flare. We will come to a concluding viewpoint that flares are the manifestation of the recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which has been disrupted via interaction with convective plasma while rising through the convection zone.

  • PDF

Physics of Solar Flares

  • Magara, Tetsuya
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.25.1-25.1
    • /
    • 2010
  • This talk outlines the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes related to a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in current sheets that causes shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes which affect lower atmospheres such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been developed, in which numerical simulation is a strong tool reproducing the time-dependent, nonlinear evolution of plasma before and after the onset of a flare. In this talk we review various models of a flare proposed so far, explaining key features of these models. We show observed properties of flares, and then discuss the processes of energy build-up, release, and transport, all of which are responsible for producing a flare. We come to a concluding view that flares are the manifestation of recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which was disrupted via interaction with convective plasma while it was rising through the convection zone.

  • PDF

Module Design and Performance Evaluation of Surge Arrester for Loading In Railway Rolling Stock (전철 탑재형 피뢰기의 모듈설계 및 성능평가기술)

  • Cho, H.G.;Kim, S.S.;Han, S.W.;Lee, U.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2038-2040
    • /
    • 2000
  • The main objective of this paper is to design and test a new type of polymer ZnO surge arrester for AC power system of railroad vehicles. Metal oxide surge arrester for most electric power system applications, electric train and subway are now being used extensively to protect overvoltage due to lightning. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of ZnO elements in a surge arrester occurs due to flashover, fault short current flows through the arrestor and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock, pressure rise. etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion. The main research works are focused on the structure design by finite element method, pressure relief of module, and studies of performance of surge arrester for electric railway vehicle.

  • PDF

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.