• Title/Summary/Keyword: electric power wheelchair

Search Result 24, Processing Time 0.02 seconds

A Study on Apply of Smart Sensors for Wheelchair Balancing Control (휠체어 균형 조정을 위한 스마트 센서의 적용에 관한 연구)

  • Ma, Linh Van;Cho, Young-bin;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1585-1592
    • /
    • 2018
  • Due to un-balancing weight allocation on the wheelchair the existing wheelchair system are faced with the risk of flipping or falling when a wheelchair goes up to a hill. In to order to be safer during riding the wheelchair, in this paper, we proposed a real-time new solution using the integrated Gyro Sensor and Tilt Sensor for controlling the balance. Because the typical property of wheelchair is for the special user who meets the difficulty in moving on foot the maintain the balance of wheel-chair systems have become important and helpful. In our method, we calculate the seat angle using information from Tilt Sensor. However, due to the law of inertia when a wheelchair is moving there is a deviation in the output value of Tilt Sensor. Therefore, we have to optimize the value of the angle by utilizing the acceleration that is the output of the Gyro Sensor. We took the advantages by using the combination of Gyro and Tilt sensors. Moreover, we also solved the consumption issue of the whole system. Through various experimentations with usage of ZigBee sensor module, the power consumption for the balancing system is reduced significantly.

Development of a hybrid wheelchairs by using AFPM motor (AFPM 전동기를 이용한 수/전동 휠체어 개발)

  • Kim Hyoung-Gil;Kong Jeong-Sik;Seo Young-Taek;Oh Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.908-910
    • /
    • 2004
  • Disabled people have benefited greatly from the developments in technology over the last twenty years. Systems have been developed and refined to help them overcome, or cope with, difficulties they experience as a result of their disabilities. As technology has become cheaper, more powerful and easier to use, disabled people have taken to using them to an ever increasing degree. In this paper, we propose novel hybrid mobility devices which use a combination of human power and electric power. This paper deals with the design of a direct-drive wheel Axial-flux permanent magnet motor. This type motor prove to be the best candidate for application in electric vehicles, as in comparison with conventional motors they allow design with higher compactness, lightness. A prototype vehicle for an application as a hybrid wheelchair is designed, built, and tested.

  • PDF

The torque distribution algorithm of driving wheels using 2D joystick in the electric wheel-chair (2D 조이스틱에 기반한 전동휠체어의 토크 분배 알고리즘)

  • Park, Sung-Jun;Park, Je-Wook;Kim, Jang-mok
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.212-213
    • /
    • 2013
  • This paper proposes the algorithm of torque distribution in the electric wheel-chair using 2D joystick for drive safety. For the accurate driving performance, the specific and precise torque distribution is required in both wheels depending on signals of X-Y axis that is generated from 2D joystick. The signals of X-Y axis from joystick are transformed into the propulsion force and the torque reference. And the torque reference can be generated through the dynamic model of wheel-chair. The optimal dynamic characteristics of the electric powered wheelchair can be obtained, by adjusting the sensitivity coefficients of propulsion force and torque reference, In addition, the system takes smooth and stable control characteristics due to continuous torque output at all directions of joystick. The several simulations verify the usefulness of the proposed algorithm about torque distribution.

  • PDF

Usability Study of the Elderly Women Using Indoor Driving and Elevating Electric Wheelchairs (실내 주행 및 승강 전동 휠체어를 이용하는 고령 여성의 사용성 연구)

  • Kim, Young-Pil;Hong, Jae-Soo;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.419-427
    • /
    • 2020
  • This study was undertaken to address the difficulties and inconveniences of an electric wheelchair. We focused on improving usability of initially completed products by augmenting the prototypes designed in the previous study. For evaluation of usability, 10 elderly women aged over 65 years, capable of movements and physical activities in daily life, were enrolled as subjects. The experimental method included a subjective satisfaction questionnaire evaluation of the elderly women using the target product, and the observation evaluation was achieved using video recording data, etc. Usability evaluation revealed that the elevating sector requires improvement of intuition through separation of the elevating control panel and the driving control panel. Improvements in the driving sector include corrections of the front wheel mechanism or driving control algorithm, UI, and sudden stop system. Transferring section assessment revealed a necessity to secure structures and add structures that support power. We believe that based on the inconveniences and improvements presented in the usability evaluation, appending the existing prototype with complementary products will improve the quality of life of elderly women with limited mobility.