• Title/Summary/Keyword: electric power plant

Search Result 947, Processing Time 0.027 seconds

Study on Following of Parmeter ${\alpha}$ of 2-DOF PID Controller Using Fuzzy Algorithm

  • Lee, Sang-Min;Cho, Yong-Sung;Park, Jong-Oh;Choo, Yeon-Gyu;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.307-311
    • /
    • 2003
  • 2-mass system is generally used as controller of the variable-speed to transfer electromotion power to mechanical load such as industrial robot, driving parts of electric vehicle, rolling machine system of steel plant and driving parts of elevator. In this case, PI controller is often used as a velocity controller because of simplicity of system. But PI control algorithm is not enough for obtaining the control characteristics required for this system. To solve this problem, 2-mass system based on the PID controller derives the optimum PID parameters by pole assignment and estimation of the ITAE performance index. In this case, the system have tenacious properties about disturbance, but it causes extreme overshoot and vibration because of rapidly output of controller in early transient response about desired value. And if speed control system is applied by 2-DOF parameter ${\alpha}$, a temporary value, we must induce most suitable parameter by complicate pole assignment and estimation of the ITAE performance index whenever ${\alpha}$ changes. In this paper, to solve this problem we suggest control algorithm to followed exactly value of ${\alpha}$ as 2-DOF parameter by using fuzzy algorithm . So, intelligence algorithm modeled by human knowledge, experience, teachability and judgment follow exact ${\alpha}$ value and it can compose the efficient 2-DOF PID controller to improve following performance, overshoot decrease.

  • PDF

New Environmental Impact Assessment Technology (신환경영향평가기술(新環境影響評價技術)의 개발방향(開發方向))

  • Han, Sang-Wook;Lee, Jong-Ho;Nam, Young-Sook
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.4
    • /
    • pp.277-290
    • /
    • 2000
  • The purpose of this study is to identify the problems of environmental impact assessment(EIA) and to suggest new EIA technology. The problems of EIA in Korea can be summarized as follows. First, the EIA does not reflect the impact of policy, plan and program on environment. Second, the project EIA does not consider the cumulative impacts such as additive impacts, synergistic impacts, threshold/saturation impacts, induced and indirect impacts, time-crowded impacts, and space-crowded impacts. Third, the EIA techniques in Korea are not standardized. Finally, the present EIA suggests only alternatives to reduce adverse impacts. To solve above-mentioned problems, the development of new EIA technology is essential. First, the new EIA technology should be developed toward pollution prevention technology and comprehensive and integrated environmental management technology. Second, new fields of EIA for pollution prevention contain strategic environmental assessment, cumulative impacts assessment, socio-economic impact assessment, cyber EIA and EIA technology necessary after the reunification of Korean Peninsula. Third, EIA technology for integrated environmental management contains the development of integated environment assessment system and the development of packaged EIA technology. The EIA technology for integrated environmental assessment system contains (1) development of integrated impact assessment technology combining air/water quality model, GIS and remote sensing, (2) integrated impact assessment of EIA, traffic impact assessment, population impact assessment and disaster impact assessment. (3) development of integrated technology combining risk assessment and EIA (4) development of integrated technology of life cycle assessment and EIA, (5) development of integrated technology of spatial planning and EIA, (6) EIA technology for biodiversity towards sustainable development, (7) mathematical model and GIS based location decision techniques, and (8) environmental monitoring and audit. Furthermore, there are some fields which need packaged EIA technology. In case of dam development, urban or industrial complex development, tourist development, landfill or combustion facilities construction, electric power plant development, development of port, road/rail/air port, is necessary the standardized and packaged EIA technology which considers the common characteristics of the same kind of development project.

  • PDF

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (S화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기및 구조물에 미치는 파동영향조사)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.8 no.1
    • /
    • pp.3-16
    • /
    • 1990
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill $\varphi{70mm}$ on the calcalious sand stone(sort-moderate-semi hard Rock). The total numbers of feet blast were 88. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagtion Law in Blasting Vibration $V=K(\frac{D}{W^b})^n$ where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites (m) W : Maximum Charge per delay-period of eighit milliseconds or more(Kg) K : Ground transmission constant, empirically determind on th Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity $D/W^b$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cabic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over loom distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m----under l00m----- $V=41(D/3\sqrt{W})^{-1.41}$ -----A Over l00m-----$V= 121(D/3\sqrt{W})^{-1.66}$-----B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

A design of radiation hardened common signal processing module for sensors in NPP (내방사선 원전센서 공통 신호처리 모듈 설계)

  • Lee, Nam-ho;Hwang, Young-gwan;Kim, Jong-yeol;Lee, Seung-min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1405-1410
    • /
    • 2015
  • In this study we designed the radiation-hardened sensor signal processing modules that can be commonly used for a variety of sensors during normal operation and even in high-radiation environments caused by an accident. First development module was designed to receive the change of the R and C value from the sensors and to process the signal as a PWM modulation scheme. This module was assessed to have ± 10% error to the Full-Scale in the radiation test in the range of 12 kGy TID. The main cause of the error was analyzed as the annealing of the common circuit in the switching element and the consequent increase in the duty ratio of the pulse width modulation circuit according to the radiation dose increasement. The redesigned module for higher radiation resistivity with Stub transistor circuit was found to have less than 5% error to the Full-scale from the radiation test results for 20.7 kGy TID range.

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works (삼천포화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.6
    • /
    • pp.97-105
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ø70mm on the calcalious sand stone (soft-moderate-semi hard Rock). The total numbers of fire blast were 88 round. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagation Law in Blasting Vibration (Equation omitted) where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum Charge per delay-period of eighit milliseconds o. more(kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D / W$^n$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over 100m distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30 ‥‥‥under 100m ‥‥‥V=41(D/$^3$√W)$\^$-1.41/ ‥‥‥A Over 100 ‥‥‥‥under 100m ‥‥‥V=121(D/$^3$√W)$\^$-1.56/ ‥‥‥B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

Comparison of operational efficiency between sand-filtration process and membrane filtration process (모래여과 공정과 막여과 공정의 운영효율 비교)

  • Byeon, Kwangjin;Jang, Eunsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.529-537
    • /
    • 2017
  • Membrane filtration process is an advanced water treatment technology that has excellently removes turbidity and microorganisms. However, it is known that it has problems such as low economic efficiency and the operating stability. Therefore, this study was to evaluate on the economical feasibility and operational stability comparison of membrane and sand filtration process in Im-sil drinking water treatment plant. For the economic analysis of each process, the electricity cost and chemical consumption were compared. In the case of electric power consumption, electricity cost is $68.67KRW/m^3$ for sand filtration and $79.98KRW/m^3$ for membrane filtration, respectively. Therefore, membrane filtration process was about 16% higher than sand filtration process of electricity cost. While, the coagulant usage in the membrane filtration process was 43% lower than the sand filtration process. Thus, comparing the operation costs of the two processes, there is no significant difference in the operating cost of the membrane filtration process and the sand filtration process as $85.94KRW/m^3$ and $79.71KRW/m^3$ respectively (the sum of electricity and chemical cost). As a result of operating the membrane filtration process for 3 years including the winter season and the high turbidity period, the filtrated water turbidity was stable to less than 0.025 NTU irrespective of changes in the turbidity of raw water. And the CIP(Clean In Place) cycle turned out to be more than 1 year. Based on the results of this study, the membrane filtration process showed high performance of water quality, and it was also determined to have the economics and operation stability.

Degradation Damage Evaluation for Turbine Structural Components by Electrochemical Reactivation Polarization Test (전기화학적 재활성화 분극시험에 의한 터빈부재의 열화손상 평가)

  • Kwon, Il-Hyun;Baek, Seung-Se;Lyu, Dae-Young;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1241-1249
    • /
    • 2002
  • The extent of materials deterioration can be evaluated accurately by mechanical test such as impact test or creep test. But it is almost impossible to extract a large test specimen from in-service components. Thus material degradation evaluation by non-destructive method is earnestly required. In this paper, the material degradation for virgin and several aged materials of a Cr-Mo-V steel, which is an candidated as structural material of the turbine casing components for electric power plant, is nondestructively evaluated by reactivation polarization testing method. And, the results obtained from the test are compared with those in small punch(SP) tests recommended as a semi-nondestructive testing method using miniaturized specimen. In contrast to the aged materials up to 1,000hrs which exhibit the degradation behaviors with increased ${\Delta}[DBTT]_{SP}$, the improvement of mechanical property can be observed on the 2,000hrs and 3,000hrs aged materials. This is because of the softening of material due to the carbide precipitation, the increase of ferritic structures and the recovery of dislocation microstructure by long-time heat treatment. The reactivation rates($I_R/I_{Crit},\;Q_R/Q_{Crit}$) calculated by reactivation current densityt ($I_R$) and charge($Q_R$) in the polarization curves exhibit a good correlation with ${\Delta}[DBTT]_{SP}$ behaviors.

Calculation of Induced Current in the Human Body around 765 kV Transmission Lines (765 kV 초고압 송전선 주변의 인체 유도전류 계산)

  • 명성호;이재복;허창수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.802-812
    • /
    • 1998
  • Safety related to electric field exposure for the personnel of high voltage power plant and substation is of importance. To analyze the induced current influencing on human body in this paper, we calculate directly capacitance in three dimension which is complex and time consuming, as not to separate the voltage source and the induced object using a effective modeling technique. The proposed algorithm in this paper has been applied to 765 kV high voltage transmission line to evaluate human hazard for the induced current through the case study. As the results, the short circuit current of human body has been identified in the range of 0.3 mA to 6.8 mA. Closing to transmission line, this range of short current can exceed 5 mA that ANSI recommended let-go current. Therefore, it is necessary to countermeasure such as putting on conductive clothing in live-line maintenance of transmission line.

  • PDF

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (S 화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.4
    • /
    • pp.3-12
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M /S delay caps. Drill depth was from 3m to 6m with Crawler Drill 70mm on the calcalious sand stone (soft-moderate-semi hard Rock) . The total numbers of feet blast were 88. Scale distance were induces 15.52-60.32. It was applied to Propagation Law in blasting vibration as follows .Propagtion Law in Blasting Vibration V=k(D/W/sup b/)/sup n/ where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W ; Maximum Charge per delay -period of eight milliseconds or more(Kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D/W/sup b/ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three groups. Cabic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over loom distance because the frequency is varified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m--under 100m----V=41(D/ W)/sup -1.41/-----A Over l00m---------V=121(D/ W)/sup -1.56/-----B K value on the above equation has to be more specified for furthur understand about the effect of explosives. Rock strength, And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle (복합 사이클의 배기가스 열회수 시스템에 의한 선박용 디젤엔진의 연료 절약에 관한 이론적 연구)

  • Choi, Byung Chul;Kim, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.171-179
    • /
    • 2013
  • The thermodynamic characteristics of a combined cycle applied with a topping cycle such as a trilateral cycle at relatively high temperatures and a bottoming cycle such as an organic Rankine cycle at relatively low temperatures have been theoretically investigated. This is an electric generation system used to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when the boundary temperature between the topping and the bottoming cycles increased, the system efficiencies of energy and exergy were simultaneously maximized because the total exergy destruction rate (${\sum}\dot{E}_d$) and exergy loss ($\dot{E}_{out2}$) decreased, respectively. In the case of a marine diesel engine, the waste heat recovery electric generation system can be utilized for additional propulsion power, and the propulsion efficiency was found to be improved by an average of 9.17 % according to the engine load variation, as compared to the case with only the base engine. In this case, the specific fuel consumption and specific $CO_2$ emission of the diesel engine were reduced by an average of 8.4% and 8.37%, respectively.