• Title/Summary/Keyword: electric power plant

Search Result 947, Processing Time 0.033 seconds

Condenser cooling system & effluent disposal system for steam-electric power plants: Improved techniques

  • Sankar, D.;Balachandar, M.;Anbuvanan, T.;Rajagopal, S.;Thankarathi, T.;Deepa, N.
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.355-367
    • /
    • 2017
  • In India, the current operation of condenser cooling system & effluent disposal system in existing power plants aims to reduce drawal of seawater and to achieve Zero Liquid Discharge to meet the demands of statutory requirements, water scarcity and ecological system. Particularly in the Steam-Electric power plants, condenser cooling system adopts Once through cooling (OTC) system which requires more drawal of seawater and effluent disposal system adopts sea outfall system which discharges hot water into sea. This paper presents an overview of closed-loop technology for condenser cooling system and to achieve Zero Liquid Discharge plant in Steam-Electric power plants making it lesser drawal of seawater and complete elimination of hot water discharges into sea. The closed-loop technology for condenser cooling system reduces the drawal of seawater by 92% and Zero Liquid Discharge plant eliminates the hot water discharges into sea by 100%. Further, the proposed modification generates revenue out of selling potable water and ZLD free flowing solids at INR 81,97,20,000 per annum (considering INR 60/Cu.m, 330 days/year and 90% availability) and INR 23,760 per annum (considering INR 100/Ton, 330 days/year and 90% availability) respectively. This proposed modification costs INR 870,00,00,000 with payback period of less than 11 years. The conventional technology can be replaced with this proposed technique in the existing and upcoming power plants.

Development of monitoring system of static frequency converter in pumped storage power plant (양수발전소 SFC 감시시스템 개발)

  • Lee, Joo-Hyun;Lim, Ick-Hun;Ryu, Ho-Sun;Sin, Man-Soo;Kim, Bong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.213-215
    • /
    • 2006
  • A static frequency converter(SFC) in a pumped storage power plant is important equipment for converting electric motor kinetic energy into electric Bower. A SFC monitoring system consists of high voltage thyristor firing equipment, fault detection module, data gathering module, real time data processing equipment and man machine Interface system. This paper describes SFC system overview, developed SFC monitoring system configuration including system characteristics. and successful application result to San-Cheong pumped storage power plant.

  • PDF

Demonstration of EPRI CHECWORKS Code to Predict FAC Wear of Secondary System Pipings of a Nuclear Power Plant

  • Lee, Sung-Ho;Seong Jegarl;Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.375-384
    • /
    • 1999
  • The credibility of CHECWORKS FAC model analysis was evaluated for plant application in a model plant chosen for demonstration. The operation condition at each pipe component was defined before the wear rate analysis by plant data base, water chemistry analysis, and network flow analysis. The predicted wear was compared with the measured wear for 57 sample components selected from 43 susceptible line groups analysed. The inspected 57 locations represent components of highest predicted wear in each line group. Both absolute value and relative ranking comparisons indicated reasonable correlations between the predicted and the measured values. Four components showed much higher measured wear rates than the predicted ones in the feed water train from main feed water pump discharge to steam generator, probably due to high hydrazine concentration operation the effect of which had not been incorporated into the CHECWORKS model. The measured wear was higher than the predicted one consistently for components with least susceptibility to FAC. It is believed that the conservatism maintained during UT data analysis dominated the measurement accuracy. A great deal of enhancement is anticipated over the current plant pipe management program when a comprehensive plant pipe management program is implemented based on the model analysis.

  • PDF

Development of Dynamic Simulation Software for Power Plant and its Application to Once-Through Boiler (플랜트 동특성 해석용 소프트웨어 개발 및 초임계압 관류형 보일러에의 적용)

  • Lee, Ki-Hyun;Lee, Dong-Su;Cho, Chang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.656-661
    • /
    • 2000
  • In the recent trend of electric power supply market, a variable pressure operation supercritical once-through steam generator is highlighted as a thermal power plant for cycling load because of its superiority in load regulation. Almost all thermal power plants of the future are expected to be variable pressure operation supercritical once-through units. APESS(Advanced Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is under being developed by Korea Heavy Industries & Construction Co., Ltd. This paper present the introduction of APESS and the result of simulation for variable pressure operation supercritical once-through steam generator.

  • PDF

An investigation of environmental tests for electric control system in power plants (발전소 전자제어설비 환경시험에 관한 고찰)

  • Jeong, Chang-Ki;Lee, Joo-Hyun;Rhew, Hong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.550-554
    • /
    • 1997
  • It is important to select a reliable electronic control system in power plants because a trip of a power plant caused by malfunction of the control system can lead to a great deal of economic and social loss. In this paper. environmental test specifications for evaluating the reliability of the electronic control system were developed in order to select a reliable one. Also, the electronic control systems made by domestic manufacturers were tested based on these developed environmental test specifications.

  • PDF

Development of an Unmanned Control System of Induction Generator for a Wave Power Plant

  • Hwan, Jeon-Bong;Lim, Yong-Kon;Hong, Seok-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.74.5-74
    • /
    • 2001
  • The wave power plant is a generating system to convert the wave energy resources to electric energy. ´CHUJEON A´, which is a prototype of wave power plant developed by KORDI(Korea Ocean Research and Development Institute), has been launched for its performance test. A wound rotor induction machine is adopted as a generator for the power plant to acquire constant frequency and voltage over wide range of rotor speed. Because the generator of ´CHUJEON A´ has no connection to the power grid line on land, all of the processes to generate and consume the electricity have to be conducted on the floating plant. This paper deals with the design and implementation of the unmanned control system for ´CHUJEON A´. The system includes generator control system, power conversion and charging system, data acquisition and wireless communication system ...

  • PDF

Development of Q-Class DC Power Supply for N.P.P (발전소 제어계통 Q등급 직류전원공급장치 개발)

  • Park, Jong-Beom;Yoon, Gi-Gab;Lee, Nak-Hee;Kim, Deuk-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.331-333
    • /
    • 1999
  • Power supply for Nuclear Power Plant was developed, and MMI monitoring circuit was added to the main function of power supply. The developed power supply is designed to show equal or higher performance compared with the existing power supplies. Performance of the power supply is verified by simulations, experiments, and authentication test for Q-class, he status of power supply and fault waveform can be displayed and analyzed on PC by RS-232C port. By adopting the latest parts, mainly domestic models, production cost and delivery can be reduced. Replacement period of capacitor can be extended by life estimation.

  • PDF

Safety Evaluation for Restoration Process on Plastic Deformed Cylindrical Beam (소성변형된 실린더형 빔의 복원 안전성 평가)

  • Park Chi-Yong;Boo Myung-hwan
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.7-12
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore a damaged part of large machinery or structure which is installed in the hazard working place. In this paper, to evaluate the safety of plastic deformed cylindrical beam a finite element technique has been used. The variations of residual stresses on the process of damaging and restoring for surfaces and cross-sections have been examined. The results show that the maximum von Mises stresses occur outer cylinder surfaces of boundary between cylindrical beam support md cylindrical beam when deformation procedure and restoring force is applied. The maximum residual stress remains 158.6MPa in the inner wall and this value correspond to $53\%$ of yield stress then restoration procedure is finished.