• Title/Summary/Keyword: electric motor unit interior panel

Search Result 5, Processing Time 0.021 seconds

Life Cycle Assessment on the Interior Panel of Electric Motor Unit (EMU) (전동차 내장판넬에 대한 전과정평가 연구)

  • Lee, Jae-Young;Choi, Yo-Han;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.517-523
    • /
    • 2006
  • The sustainable development is a key issue in the whole field of economy, culture and society, which can be accomplished by the improvement of environment. Recently, life cycle assessment(LCA) has been applied to reduce environmental impacts preliminarily by evaluating the environmental performance of a product through its life cycle. In this study, life cycle assessment was performed to analyze quantitatively the environmental impact on the interior panel of electric motor unit(EMU). As a result, the interior panel with aluminum showed the most global warming(GW), while that with phenol and plastic showed high fresh water aquatic ecotoxicity(FAET) and marine water aquatic ecotoxicity(MAET), respectively. Global warming was occurred mainly due to the emission of $CO_2$ by energy consumption. FAET and MAET were caused by the pollutants released from acid-washing and paints coating process. Therefore, an environmental-friendly EMU can be designed considering the environmental impacts of interior panel.

Comparative LCA of three types of Interior Panel (IP) in Electric Motor Unit (EMU) (전동차 내장패널(Interior Panel)에 대한 비교 전과정평가)

  • Choi, Yo-Han;Lee, Sang-Yong;Kim, Yong-Ki;Lee, Kun-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.596-599
    • /
    • 2007
  • A comparative Life Cycle Assessment (LCA) among three types of Electric Motor Unit (EMU) Interior Panel (IP) was conducted. A functional unit for comparative LCA is a weight of IP for 1 EMU. It is assumed that Manufacturing stage and its upstream processes, Use stage and End of Life (EoL) stage are included in the boundary of product system. For Use stage, the weight of IP causes electricity consumption. It is assumed that aluminum IP is recycled and the other IPs are incinerated at the EoL stage. As a comparison results, aluminum IP has much larger environmental impact (5.162pt) than others (FRP IP; 4.069pt, Phenol IP; 4.053pt) even though recycling consideration is included. The manufacturing stage of aluminum IP has relative big environmental impact (1.824pt) and this point make the most important difference from other IPs (FRP IP; 0.1617pt, Phenol IP; 0.4534pt)). Despite of large weight difference between FRP IP (888.96kg) and phenol IP (316kg), the final environmental impact result has only little difference (0.016pt, 0.39%). With this result, the EMU designer can choose IP with a consideration of the environmental performance of IP.

Comparative LCA of three types of Interior Panel(IP) in Electric Motor Unit(EMU) (전동차 내장패널(Interior Panel)에 대한 비교 전과정평가)

  • Choi, Yo-Han;Lee, Sang-Yong;Kim, Yong-Ki;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.584-588
    • /
    • 2007
  • A comparative Life Cycle Assessment(LCA) among three types of Electric Motor Unit(EMU) Interior Panel(IP) was conducted. A functional unit for comparative LCA is a weight of IP for 1 EMU. It assumed that Manufacturing stage and its upstream processes, Use stage and End of Life(EoL) stage are included in the boundary of product system. For Use stage, the weight of IP causes electricity consumption. It is assumed that aluminum IP is recycled and the other IPs are incinerated at the EoL stage. As comparison results, aluminum IP has much larger environmental impact(5.162pt) than others(FRP IP; 4.069pt, Phenol IP; 4.053pt) even though recycling consideration is included. The manufacturing stage of aluminum has relative big envrionmental impact(1.824pt) and this point make the most important difference from other IPs(FRP IP; 0.1617pt, Phenol IP; 0.4534pt)). Despite of large weight difference between FRP IP(888.56Kg) and phenol IP(315Kg), the final environmental impact result has only little difference(0.016pt, 0.39%). With this result, the EMU designer can choose IP with a consideration of the environmental performance of IP.

  • PDF

The environmental policy suggestion for Electric Motor Unit through Environmental Product Declaration (전동차 내장판넬의 환경성 정보 공개 및 정책 활용 방안)

  • Chun, Yoon-Young;Jeong, In-Tae;Lee, Kun-Mo;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1536-1544
    • /
    • 2006
  • The aim of this paper is to show how LCA(Life Cycle Assessment) is used as a tool to evaluate the environmental burdens associated with EMU(Electronic Motor Unit), especially one of main components, an interior panel. Thus, the LCA results are polished into the general environmental product declaration format to communicate with the industrial and institutional customers. The format includes the product information and environmental information. In the list of environmental information, profile is consisted of two major results from the LCA study. One is the inventory analysis and the other is the characterized impact results. The format shown in this paper can be the one of option to choose environmentally preferable product and suggestion aimed at the institutional consumer such as government procurement office and corporation's purchasing department.

  • PDF

Development of Recycling Process for the used FRP of Electric Motor Unit(EMU) (전동차의 폐 FRP 내장재 재활용 공정 개발)

  • Lee, Hyung-Tae;Kim, Yong-Ki;Lee, Cheul-Kyu;Lee, Jae-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.19-21
    • /
    • 2007
  • In recent, a great number of electric motor units (EMUs) have been disused in Korea according as its legal duration is 25 years. Generally, the disused EMUs are disposed by selling original form or scrapping for junk. Until now, any efficient disposal system for disused EMUs has not existed. The purpose of this study was to develop the recycling process for the FRP used as an interior panel of EMU. This process was to manufacture a product mixing binders, fillers and the powdered FRP. The characteristics of a product were changed with the mixing ratio of the powdered FRP. The optimal ratio of the powdered FRP was from 10 % to 15 % (w/w). In the future, the application of this process can enhance the efficiency of resource recycling and decrease the cost of waste treatment in the EMU industry.

  • PDF