• Title/Summary/Keyword: electric machinery

Search Result 552, Processing Time 0.035 seconds

Cool-down test of cryogenic cooling system for superconducting fault current limiter

  • Hong, Yong-Ju;In, Sehwan;Yeom, Han-Kil;Kim, Heesun;Kim, Hye-Rim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.57-61
    • /
    • 2015
  • A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

Development of Maglev Vehicle for Semiconductor Transport System in Small Scale (반도체 반송 시스템을 위한 축소형 자기부상 열차 시스템 개발)

  • Sung, So-Young;Choi, Jang-Young;Sung, Ho-Kyung;Cho, Han-Wook;Jang, Seok-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.616-618
    • /
    • 2008
  • This paper propose nonlinear electromagnet suspension system model and defines electromagnet design specification of Maglev vehicle for transport system of semiconductor manufacturing line. The bandwidth of the acceleration sensor is defined and manufactured using i-mems technique acceleration sensor from this Nonlinear electromagnet suspension model. Through the simulation of non-linear model it was possible to compare the gain with the experiment to confirm the accuracy of the nonlinear suspension system. Till now mainly linear model has been used in many electromagnet suspension system, which results different gains in simulation and experiments. This more accurate non-linear model can be applied in many ways in designing electromagnet suspension systems.

  • PDF

Electric Power Charging of Silicon Solar Cells using a Laser (레이저 조사에 따른 실리콘 솔라셀의 출력 특성)

  • Lee, Hu-Seung;Bae, Han-Sung;Kim, Seongbeom;Joo, Yun-Jae;Kim, Jung-Oh;Noh, Ji-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.362-367
    • /
    • 2016
  • Recently, wireless charging systems have expanded their applications from household electrical appliances to outdoor activity devices. In wireless charging systems, solar cells have versatile advantages, such as abundant raw materials within the earth, reasonable prices of products, and highest power conversion efficiency. In this study, the photovoltaic effect between a silicon solar cell and a photon of infrared wavelength was simulated using a Shockley diode equation. A solar cell power charging system was then set up to: 1) clarify mechanisms of the charging interaction based on the photovoltaic effect with a laser source, and 2) verify interdependency of the parameters: laser settings and geometrical position between a solar cell and the laser. As was observed, the solar cell generates more power when the photon was irradiated uniformly, intensively, and vertically on the surface of the solar cell.

Development of a Lifting Utility with Balance-controlled Platform (작업대 수평유지식 과수원 고소작업차 개발)

  • Jang, Ik-Joo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.171-179
    • /
    • 2011
  • Facing the current hikes of labor wage and high oil price, it is needed to have energy-saving machinery which also enables us precise farm operations. Thus, it was necessary to develop a safe machine which allows secure and pleasant works along orchard slopes. In this study, a lifting utility with balance-controlled platform was developed. The platform utility could maintain to level the workbench while driving along slopes. Even the machine body was driven at the tilt angle ranges of ${\pm}20^{\circ}$, the platform bench could be maintained within ${\pm}0.5^{\circ}$ of a gimbal angle. In addition, the machine lifted up to 2.0 m using an electric-hybrid driving mechanism with a low noise. A tandem hybrid power source was developed with a DC 72 V, 100 AH for the Deep-Cycle batteries, charged with 3.5 kW gasoline generator as an auxiliary power source. HST, which is one of the CVT's, was adopted as a transmission device, and a crawer track was used for the safety of the vehicle against tip-over. The maximum lifting height of platform was is 2,500 mm, and the maximum extendable width was 2,900 mm.

Development of the Pneumatic Servo Valve

  • Kim, Dong-Soo;Choi, Byung-Oh;Kim, Kwang-Young;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1146-1151
    • /
    • 2003
  • Pneumatic servo valve is an electro-mechanical device which change electric signals to a proper pneumatic signals, that is, flowrate and pressure. In this study, a pneumatic servo valve was designed and each simulation was conducted on any variation in the flowrate depending upon the magnetic force of the linear force motor and the displacement of the spool. And permanent magnet was used as a material for the plunger of the servo valve. Thereby, a low electrical power consumption type coil was desinged. And a modeling for the coil design was conducted by using the magnetic circuit. also, the feasibility of the modeling was verified by using a commercial magnetic field analysis program. The designed and fabrication of the spool and sleeve, position sensor, servo controller and the dynamic characteristic verified by the experiment.

  • PDF

Carbon nanotube assembly technique using the dielectrophoresis on electrodes (전극위에 유전 영동법을 이용한 탄소 나노튜브의 조립기술)

  • Han C.S.;Seo H.W.;Choi D.G.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1535-1538
    • /
    • 2005
  • We present a mass productive and reproducible assembly technique of a single bundle of single-walled carbon nanotubes (sb-SWNTs) using dielectrophoresis (DEP). Gold electrodes with 10 gaps made via microlithography were used to align the carbon nanotubes (CNTs). The magnitude and type of applied electric field were investigated to verify their effects on CNT assembly. The optimum assembling conditions in which sb-SWNTs could be positioned at a desired site were experimentally identified, and the characteristics of the assembled sb-SWNTs were evaluated from AFM, Raman spectroscopy, and I-V curve. This assembly method has potential for applications such as gas sensors or electronic devices.

  • PDF

Characteristics of Low NOx Plasma Burner Incorporating with Rotating Arc Plasma (회전 아크 적용 플라즈마 저 NOx 버너 연소특성)

  • Kim, Kwan-Tae;Kang, Hee-Seok;Lee, Dae-Hoon;Song, Young-Hoon;Park, Jae-Eon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.934-941
    • /
    • 2011
  • Characteristics of low NOx burner is investigated. Low NOx burner introduced in this paper adopts two staged combustion with plasma burner for the 1st stage combustion. Extensive parametric tests were done to figure out the effect of burner stoichiometry, staged thermal load, electric power for plasma generation. Overall NOx production by burner shows effective reduction by adopting plasma staged burner. and the aspects depends on the fuel stoichiometry of 1st stage burner or operating condition of plasma burner. It is promising to use plasma burner as an alternative tools of low NOx burner technology.

On the Development of a Gas Metal Arc Welding Robot Controller (가스금속 아아크 용접용(Gas Metal Arc Welding) 로보트제어기 개발에 관한 개론)

  • Pee, Won-Il;Park, Byung-Gun;Kim, Jung-Ho;Koh, Kwang-Ill
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.376-379
    • /
    • 1993
  • GoldStar Industrial Systems Co. R & D center successfully developed the inverter for welding under the support of GoldStar Electric Machinery Co. Now, we are currently working on the mechanical part of articulated robot and a high-performance general purpose motion controller. By combining the above three items, we will be able to constitute the complete welding robot system on our own. In this article. the welding robot system currently under developing is introduced. The main focus will be placed on the development of general purpose motion controller with welding control module. Therefore, the architecture of welding robot controller where the general purpose motion controller is combined with the welding controller module will be explained. Here, the software system will be explained with regard to the hardware system.

  • PDF

Development of a Plate-type Megasonic with Cooling Pins for Sliced Ingot Cleaning

  • Hyunse Kim;Euisu Lim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • In this article, a plate-type megasonic cleaning system with cooling pins is proposed for the sliced ingot, which is a raw material of silicon (Si) wafers. The megasonic system is operated with a lead zirconate titanate (PZT) actuator, which has high electric resistance, thus when it is being operated, it dissipates much heat. So this article proposes a megasonic system with cooling pins. In the design process, finite element analysis was performed and the results were used for the design of the waveguide. The frequency with the maximum impedance value was 998 kHz, which agreed well with the measured value of 997 kHz with 0.1 % error. Based on the results, the 1 MHz waveguide was fabricated. Acoustic pressures were measured, and analyzed. Finally, cleaning tests were performed, and 90 % particle removal efficiency (PRE) was achieved over 10 W power. These results imply that the developed 1 MHz megasonic will effectively clean sliced ingot wafer surfaces.

  • PDF

Vibration Analysis of Pump/Turbine and Generator/Motor Rotor System for Pumped Storage Power Stations (양수발전소용 펌프수차${\cdot}$발전기 전동기 축계의 진동해석)

  • Yang, Bo-Suk;Choi, Byung-Gun;Kim, Young-Han;Ha, Hyun-Cheon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.39-45
    • /
    • 1999
  • Pumped-storage power plants pumps the water from the lower reservoir to the upper reservoir using the extra electric power at night and generates electric power in the daytime. Currently it tends to be a high-head large-capacity machine. In this paper, we developed the computer programs for vibration analysis of the pump/turbine and generator/motor rotor system considering electromagnetic force, hydrodynamic unbalance force, dynamic characteristics of guide bearings and add mass of water. This program was verified by applying it to the real model and calculating the critical speed, natural mode and unbalance response.

  • PDF