• Title/Summary/Keyword: electric machine

Search Result 864, Processing Time 0.026 seconds

Comparative Study on Conductivity and Moisture Content Using Polarization and Depolarization Current (PDC) Test for HV Insulation

  • Jamail, N.A.M.;Piah, M.A.M.;Muhamad, N.A.;Kamarudin, Q.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • The Polarization and Depolarization Current (PDC) measurement is an efficient and effective diagnostic technique based on time domain measurement, for evaluating the high voltage insulation condition. This paper presents a review and comparison results from several published papers on the application of the PDC method to finding the conductivity and moisture content of various types of insulators. For solid insulation, the study was focused on cable insulation, electric machine stator insulation, and paper insulator in transformer insulation with different conditions. For liquid insulation, the review and comparison was done on biodegradable and mineral transformer oils, with fresh oil condition, and aged condition. The results from previous researchers tests were complied, analyzed and discussed, to evaluate the application of the PDC method to monitor the conductivity and moisture of HV equipment insulation systems. From the review results, the PDC technique successfully gives an indication of the conductivity and moisture level of high voltage insulation.

Design of Permanent Magnet Type Wind Power Generators for Cogging Torque Reduction with Optimum Pole Arc Pitch Ratio (코깅토크 저감을 위한 최적 극호비를 갖는 영구자석형 풍력발전기의 설계)

  • Jang, Seok-Myeong;Kim, Jin-Soon;Ko, Kyoung-Jin;Choi, Jang-Young;Yoon, Gi-Gab
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.38-40
    • /
    • 2009
  • In order to achieve a gearless construction of the wind energy conversion system(WECS), a low-speed generator should be used. Of the various candidate machine types, radial-field, multi-pole, permanent magnet, synchronous machines may be used for low-speed applications. So, this paper deals with the design of direct-coupled, multi-pole radial field machines with permanent magnet(PM) excitation for wind power applications for cogging torque reduction through the determination of optimum pole arc/pitch ratio. On the basis of an equivalent magnetic circuit method(EMCM) and a space harmonic method(SHM), an initial design is performed considering restricted conditions. And then, a detailed design is made using a non-linear finite element analyses(FEA). Finally, test results concerning generating characteristics are given to confirm the validation of the design.

  • PDF

Development of 10kW Permanent Magnet Synchronous Generator for Small Hydropower Generation (소수력 발전용 10kW급 영구자석형 동기발전기 개발)

  • Jeong, Hak-Gyun;So, Ji-Young;Chung, Dong-Hwa;Ahn, Kang-Soon;Cho, Chong-Hyoun;Kim, Dae-Kyong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.44-52
    • /
    • 2013
  • This paper presents the development of 10 kW permanent magnet synchronous generator (PMSG) for small hydropower plants considering flow rates and net head. The initial and detailed design are determined using a load distribution method (LDM) which is a well-known method for designing an electric machine and a 2D-FEA which is performed for more accurate analysis of PMSG. The characteristic analysis results of proposed model with straight line magnet are satisfied with the initial model with curved magnet. Finally, the analysis and the design results are confirmed by the experimental results.

Development of Gasoline Engine Renewal CNG Generator and a Study on Exhaust Gas Characteristics of Equivalent Diesel Engine (가솔린 엔진개조 CNG 발전기 개발과 동급 디젤엔진의 배출가스 특성 연구)

  • Lee, Jung-Cheon;Kim, Ki-Ho;Lee, Jung-Min;Park, An-Young
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.74-79
    • /
    • 2018
  • Compressed natural gas has a high octane number and low particulate emission characteristics as compared with petroleum-based fuels, so it can respond to exhaust gas regulations positively. A natural gas engine has been introduced to improve the quality of the atmosphere, a diversity of fuel, a stable supply, and it has widely been used in city buses and garbage trucks. Recently, the natural gas engine has received attention by overcoming the disadvantage of the theoretical air-fuel ratio method through the development of EGR cooler and engine parts with the development of LP-EGR technology. In this study, we try to develop the cogeneration system that can simultaneously generate electric power and heat by remodeling the gasoline engine to the mixer type CNG engine. As a result, it was able to reduce the NOx (approximately 77%) compared to the diesel engines with same displacement.

IoT Basic Study on Development of Duct Burner Integrated with SCR Catalyst (SCR 촉매 일체형 덕트 버너 개발에 대한 IoT 기초연구)

  • Jang, Sung-Cheol;Shim, Yo-Seop
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2021
  • Since the optimization of the diesel engine for the ship cannot satisfy the NOx emission limit by the method of reducing the NOx emission, it is necessary to reduce the NOx by post-processing the exhaust gas. In this study, we will review the feasibility of designing a binary nozzle and mixing chamber duct for effectively converting the number of elements into NH3 in the oil burner for the SCR catalyst unit integrated duct in the ship under development through the computational heat flow analysis for the velocity distribution and temperature distribution.

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.

Characteristics of STS 304 Rolled Steel by High Temperature Low Cycle Fatigue (고온 저주기 피로에 의한 STS 304 압연강재의 특성연구)

  • Kim, C.H.;Park, Y.M.;Bae, M.K.;Shin, D.C.;Kim, D.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.12-16
    • /
    • 2019
  • In this study, strain-controlled low cycle fatigue test for hot rolled STS304 steel was carried out at $400^{\circ}C$ and $600^{\circ}C$, respectively. High temperature fatigue test was done using an electric furnace attached on the hydraulic fatigue test machine. The results of this study show that STS304 hot rolled steel has excellent static strength and fatigue characteristics. The hysteresis loop at half life was obtained in order to calculate the elastic and plastic strain. Also, Relationship between strain amplitude and fatigue life was examined in order to predict the low cycle fatigue life of STS304 steel by Coffin-Manson equation.

A study of high-efficiency rotating condensing hybrid solar LED street light module system (고효율 회전 집광형 하이브리드 태양광 LED 가로등 모듈 시스템 연구)

  • Min, Kyung-Ho;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.50-55
    • /
    • 2021
  • Solar power generation, which is one of the methods of using solar energy, has a high possibility of practical implementation compared to other renewable energy power generation, and it has the characteristic that it can generate as much power as needed in necessary places. In addition, maintenance is easy, unmanned operation is possible, and power management can be performed more efficiently if operated in a hybrid method with existing electric energy. Therefore, in this study, numerical analysis using a computer program was performed to analyze the efficient operation and performance improvement of solar energy of the rotating condensing type solar LED street lamp. As a result, the two-axis tracking type could obtain 15.23 % more electricity per year than the fixed type, and additional auxiliary power generation was required for the fixed type by 19 % per year than the tracking type. As a result of computational fluid dynamics(CFD) simulation for PV module surface temperature prediction, the The surface temperature of the Photovoltaics(PV) module incident surface was predicted to be about 10℃ higher than that of the fixed type.

A Study on the Characteristics of Heating and Cooling Loads of Standard Chicken Houses in South Korea (국내 표준계사의 냉난방부하 특성 연구)

  • Kwon, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.235-243
    • /
    • 2019
  • In South Korea, millions of poultry have died due to repeated heat waves every year. The purpose of this study is to analyze the characteristics of heating and cooling loads of chicken houses in Korea and to present an effective insulation and ventilation measures to minimize the damage of poultry due to summer heat wave and to save energy in chicken houses in winter. The heating and cooling loads of standard chicken house were calculated. As a result of the calculation of maximum heating load based on the minimum ventilation rate in winter, the outdoor air temperature requiring heating was $6{\sim}7^{\circ}C$ to keep the indoor air temperature of chicken houses as $24^{\circ}C$. The peak cooling load of chicken houses was mostly taken by the heat generated by chickens and the heat gain due to ventilation. The heat gain through building envelopes was as small as neglectable. Most of chicken houses is usually cooled by gigantic forced ventilation in summer in Korea. When the chicken houses are cooled by electric cooling machine such as cooler or air conditioner, it is more effective to keep minimum ventilation rate to reduce the maximum cooling load. To lower the temperature of supplying water to cooling pad, it is recommended to use the underground water below 10 meters from the ground if there is abundant underground water.

Deep Learning Approaches to RUL Prediction of Lithium-ion Batteries (딥러닝을 이용한 리튬이온 배터리 잔여 유효수명 예측)

  • Jung, Sang-Jin;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.21-27
    • /
    • 2020
  • Lithium-ion batteries are the heart of energy-storing devices and electric vehicles. Owing to their superior qualities, such as high capacity and energy efficiency, they have become quite popular, resulting in an increased demand for failure/damage prevention and useable life maximization. To prevent failure in Lithium-ion batteries, improve their reliability, and ensure productivity, prognosticative measures such as condition monitoring through sensors, condition assessment for failure detection, and remaining useful life prediction through data-driven prognostics and health management approaches have become important topics for research. In this study, the residual useful life of Lithium-ion batteries was predicted using two efficient artificial recurrent neural networks-ong short-term memory (LSTM) and gated recurrent unit (GRU). The proposed approaches were compared for prognostics accuracy and cost-efficiency. It was determined that LSTM showed slightly higher accuracy, whereas GRUs have a computational advantage.