• Title/Summary/Keyword: electric load forecasting

Search Result 100, Processing Time 0.026 seconds

Application of Neural Networks to Short-Term Load Forecasting Using Electrical Load Pattern (전력부하의 유형별 단기부하예측에 신경회로망의 적용)

  • Park, Hu-Sik;Mun, Gyeong-Jun;Kim, Hyeong-Su;Hwang, Ji-Hyeon;Lee, Hwa-Seok;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 1999
  • This paper presents the methods of short-term load forecasting Kohonen neural networks and back-propagation neural networks. First, historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Next day hourly load of weekdays and weekend except holidays are forecasted. For load forecasting in summer, max-temperature and min-temperature data as well as historical hourly load date are used as inputs of load forecasting neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation(1994-95).

  • PDF

The Optimal Combination of Neural Networks for Next Day Electric Peak Load Forecasting

  • Konishi, Hiroyasu;Izumida, Masanori;Murakami, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1037-1040
    • /
    • 2000
  • We introduce the forecasting method for a next day electric peak load that uses the optimal combination of two types of neural networks. First network uses learning data that are past 10days of the target day. We name the neural network Short Term Neural Network (STNN). Second network uses those of last year. We name the neural network Long Term Neural Network (LTNN). Then we get the forecasting results that are the linear combination of the forecasting results by STNN and the forecasting results by LTNN. We name the method Combination Forecasting Method (CFM). Then we discuss the optimal combination of STNN and LTNN. Using CFM of the optimal combination of STNN and LTNN, we can reduce the forecasting error.

  • PDF

The Study on Load Forecasting Using Artificial Intelligent Algorithm (지능형 알고리즘을 이용한 전력 소비량 예측에 관한 연구)

  • Lee, Jae-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.720-722
    • /
    • 2009
  • Optimal operation of electric power generating plants is very essential for any power utility organization to reduce input costs and possibly the prices of electricity in general. This paper developed models for load forecasting using neural networks approach. This model is tested using actual load data of the Busan and weather data to predict the load of the Busan for one month in advance. The test results showed that the neural network forecasting approach is more suitable and efficient for a forecasting application.

  • PDF

A study on the Electrical Load Pattern Classification and Forecasting using Neural Network (신경회로망을 이용한 전력부하의 유형분류 및 예측에 관한 연구)

  • Park, June-Ho;Shin, Gil-Jae;Lee, Hwa-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.39-42
    • /
    • 1991
  • The Application of Artificial Neural Network(ANN) to forecast a load in a power system is investigated. The load forecasting is important in the electric utility industry. This technique, methodology based on the fact that parallel structure can process very fast much information is a promising approach to a load forecasting. ANN that is highly interconnected processing element in a hierachy activated by the each input. The load pattern can be divided distinctively into two patterns, that is, weekday and weekend. ANN is composed of a input layer, several hidden layers, and a output layer and the past data is used to activate input layer. The output of ANN is the load forecast for a given day. The result of this simulation can be used as a reference to a electric utility operation.

  • PDF

Development of Distribution Load forecasting Algorithm for Distribution Planning System in KEPCO (한전 배전계획시스템을 위한 부하예측 알고리즘 개발)

  • Kwon Seong Chul;Park Chang Ho;Oh Jae Hyong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.199-201
    • /
    • 2004
  • KEPCO, has been made a lot of efforts for computerization for distribution planning system since 1980's, And as a results, DISPLAN (Distribution PLANning System) for systematic and effective planning was developed in 2003 and is being used for feeder and substation planning of KEPCO branch office. In this paper the distribution load forecasting algorithm in DISPLAN is represented and the application was showed.

  • PDF

Short-term Load Forecasting of Using Data refine for Temperature Characteristics at Jeju Island (온도특성에 대한 데이터 정제를 이용한 제주도의 단기 전력수요예측)

  • Kim, Ki-Su;Ryu, Gu-Hyun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1695-1699
    • /
    • 2009
  • This paper analyzed the characteristics of the demand of electric power in Jeju by year, day. For this analysis, this research used the correlation between the changes in the temperature and the demand of electric power in summer, and cleaned the data of the characteristics of the temperatures, using the coefficient of correlation as the standard. And it proposed the algorithm of forecasting the short-term electric power demand in Jeju, Therefore, in the case of summer, the data by each cleaned temperature section were used. Based on the data, this paper forecasted the short-term electric power demand in the exponential smoothing method. Through the forecast of the electric power demand, this paper verified the excellence of the proposed technique by comparing with the monthly report of Jeju power system operation result made by Korea Power Exchange-Jeju.

Study on a Probabilistic Load Forecasting Formula and Its Algorithm (전력부하의 확률가정적 최적예상식의 유도 및 전산프로그래밍에 관한 연구)

  • Myoung Sam Ko
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.28-32
    • /
    • 1973
  • System modeling is applied in developing a probabilistic linear estimator for the load of an electric power system for the purpose of short term load forecasting. The model assumer that the load in given by the suns of a periodic discrete time serier with a period of 24 hour and a residual term such that the output of a discrete time dynamical linear system driven by a white random process and a deterministic input. And also we have established the main forecasting algorithms, which are essemtally the Kalman filter-predictor equations.

  • PDF

An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network (인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법)

  • Park, Jinwoong;Moon, Jihoon;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.527-536
    • /
    • 2017
  • With the recent development of smart grid industry, the necessity for efficient EMS(Energy Management System) has been increased. In particular, in order to reduce electric load and energy cost, sophisticated electric load forecasting and efficient smart grid operation strategy are required. In this paper, for more accurate electric load forecasting, we extend the data collected at demand time into high time resolution and construct an artificial neural network-based forecasting model appropriate for the high time resolution data. Furthermore, to improve the accuracy of electric load forecasting, time series data of sequence form are transformed into continuous data of two-dimensional space to solve that problem that machine learning methods cannot reflect the periodicity of time series data. In addition, to consider external factors such as temperature and humidity in accordance with the time resolution, we estimate their value at the time resolution using linear interpolation method. Finally, we apply the PCA(Principal Component Analysis) algorithm to the feature vector composed of external factors to remove data which have little correlation with the power data. Finally, we perform the evaluation of our model through 5-fold cross-validation. The results show that forecasting based on higher time resolution improve the accuracy and the best error rate of 3.71% was achieved at the 3-min resolution.

Short-term Electric Load Forecasting in Winter and Summer Seasons using a NARX Neural Network (NARX 신경망을 이용한 동·하계 단기부하예측에 관한 연구)

  • Jeong, Hee-Myung;Park, June Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1001-1006
    • /
    • 2017
  • In this study the NARX was proposed as a novel approach to forecast electric load more accurately. The NARX model is a recurrent dynamic network. ISO-NewEngland dataset was employed to evaluate and validate the proposed approach. Obtained results were compared with NAR network and some other popular statistical methods. This study showed that the proposed approach can be applied to forecast electric load and NARX has high potential to be utilized in modeling dynamic systems effectively.

Deep Neural Network Model For Short-term Electric Peak Load Forecasting (단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2018
  • In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).