• Title/Summary/Keyword: electric field-induced deformation

Search Result 9, Processing Time 0.02 seconds

A study on the deformation of a bubble and a drop in a uniform electric field (균일전기장에 의한 기포와 액적의 변형에 관한 연구)

  • Gwon, Yeong-Cheol;Kim, Mu-Hwan;Gang, In-Seok;Cho, Hae-Jung;Kim, Suk-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2023-2035
    • /
    • 1996
  • In the present study, the characteristics of the electrical deformation of a bubble and a drop under a uniform electric field have been investigated to understand EHD heat transfer enhancement by an electric field. The deformation of the bubble and the drop have been studied theoretically using an electric normal stress acting on their interfaces and assured by the numerical analysis and the experiment. From the variation of bubble volume and free energy, it is found that a bubble is compressed in an electric field and free energy had larger value with increasing W and the permittivity of a dielectric fluid. The electric normal stress induced on the interface of the bubble and the drop is different. Because of the surface charge induced at the drop interface, the electric normal stress acting on the drop is much larger than that of the bubble. The drop is, therefore, deformed much more than the bubble. In addition, the experimental and numerical results show that the aspect ratio and the contact angle of the bubble increase with increasing W.

Electro-mechanical properties of Multilayer Ceramic Actuators (적층형 세라믹 액츄에이터의 전기-기계적 거동)

  • Jeong, Soon-Jong;Koh, Jung-Hyuk;Ha, Mu-Su;Lee, Jae-Suk;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.253-256
    • /
    • 2003
  • This study presents the combined effect of electric field application and mechanical compressive stress loading on deformation in a multilayer ceramic actuator, designed with stacking alternatively $0.2(PbMn_{1/3}Nb_{2/3}O_3)-0.8(PbZr_{0.475}Ti_{0.525}O_3)$ ceramics and Ag-Pd electrode. The deformation behaviors were thought to be attributed to relative $180^{\circ}$domain quantities which is determined by pre-loaded stress and electric field. The non-linearity of piezoelectricity and strain are dependent upon the young's modulus resulting from the domain reorientation.

  • PDF

Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model

  • Zhou, Yan-Guo;Chen, Yun-Min;Ding, Hao-Jiang
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.309-324
    • /
    • 2005
  • This paper presents an efficient and accurate coupled beam model for piezoelectric bimorphs based on improved first-order shear deformation theory (FSDT). The model combines the equivalent single layer approach for the mechanical displacements and a layerwise modeling for the electric potential. General electric field function is proposed to reasonably approximate the through-the-thickness distribution of the applied and induced electric potentials. Layerwise defined shear correction factor (k) accounting for nonlinear shear strain distribution is introduced into both the shear stress resultant and the electric displacement integration. Analytical solutions for free vibrations and forced response under electromechanical loads are obtained for the simply supported piezoelectric bimorphs with series or parallel arrangement, and the numerical results for various length-to-thickness ratios are compared with the exact two-dimensional piezoelasticity solution. Excellent predictions with low error estimates of local and global responses as well as the modal frequencies are observed.

Electro-mechanical properties of Multilayer Ceramic Actuators (적층형 세라믹 액츄에이터의 전기-기계거동)

  • 정순종;고중혁;송재성;홍원표;최원종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.478-481
    • /
    • 2004
  • This study presents the combined effect of electric Held application and mechanical compressive stress loading on deformation in a multilayer ceramic actuator, designed with stacking alternatively 0.2(PbMn$\_$1/3/Nb$\_$2/3/O$_3$)-0.8(PbZr$\_$0.475/Ti$\_$0.525/O$_3$) ceramics and Ag-Pd electrode. The deformation behaviors were thought to be attributed to relative 180$^{\circ}$domain quantities which is determined by pre-loaded stress and electric field. The non-linearity of piezoelectricity and strain are dependent upon the young's modulus resulting from the domain reorientation.

  • PDF

Magnetic field-induced deformation in ferromagnetic $Ni_{2}MnGa$ (강자성 $Ni_{2}MnGa$형상기억합금에서의 자장유기 변형)

  • 정순종;민복기;양권승
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.323-326
    • /
    • 2001
  • NI$_2$MnGa-based ferromagnetic shape memory alloys (FSMA) are hoped to be used as robust actuators with high performance and power density, as a replacement of other actuation materials such as thermo-mechanical SMAs and mechanical-electric piezoelectrics. Recently, we have observed significant shape changes under magnetic field application when single- and poly-crystalline forms are used. In the present study, two mechanisms have been proposed to predict the magnetic field-induced shape change as a function of external magnetic field at temperatures below Mr and above Ar. In the case of the field-induced shape change at temperature below M$_{f}$, paired martensite variants are assumed to form by application of magnetic field. The direction of magnetization in martensites formed in austenite matrix is assumed to be parallel to the applied magnetic field in the case of shape change by application at temperature above Af. Various energies has been considered in the shape change under two mechanisms.s.

  • PDF

SHAPE EFFECT ON PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR

  • Wee, S. B.;Jeong, S. J.;Song, J. S.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.163-168
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of $0.2Pb(Mg_{1/3}Nb_{2/3)O_3-0.38PbZrO_3-0,42PbTiO_3$ followed by lamination and burnout & co-firing processes. The actuators of $10\times10\times0.6~2\textrm{mm}^3$ in size were formed in a way that $60 ~ 200\mu\textrm{m}$ thick were stacked alternatively with $5\mu\textrm{m}$ thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of $90^{\circ}$/$180^{\circ}$ domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Dielectric and Piezoelectric Properties in Multilayer Ceramic Actuator (적층형 세라믹 액츄에이터의 유전 및 압전특성)

  • Choi, Hyeong-Bong;Jeong, Soon-Jong;Ha, Mun-Su;Koh, Jung-Hyuk;Lee, Dae-Su;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.615-618
    • /
    • 2004
  • The piezoelectricity and polarization of multilayer ceramic actuators, being designed to stack ceramic layer and electrode layer alternately, were investigated under a consideration of geometry, the thickness ratio of the ceramic layer to electrode layer The actuators were fabricated by tape-casting of $0.42PbTiO_3-0.38PbZrO_3-0.2Pb(Mn_{1/3}Nb_{2/3})O_3$ followed by laminating, burn-out and co-firing process. The actuators of $5\times5mm^2$ in area were formed in a way that $60{\sim}200{\mu}m$ thick ceramics were stacked 10 times alternately with $5{\mu}m$ thick electrode. Increase in polarization and electric field-displacement with increasing thickness ratio of the ceramic/electrode layer and thickness/cross section ratio were attributed to the change of $non-180^{\circ}/180^{\circ}$ domain ratio which was affected by the interlayer internal stress and Poisson ratio of ceramic layer. The piezoelectricity and actuation behaviors were found to be dependent upon the volume ratio (or thickness ratio) of ceramic layer relative to ceramic layer. Concerning with the existence of internal stress, the field-induced polarization and deformation were described in the multilayer actuator.

  • PDF

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.