• Title/Summary/Keyword: electric field effects

Search Result 512, Processing Time 0.036 seconds

Development of a Method for Improving the Electric Field Distribution in Patients Undergoing Tumor-Treating Fields Therapy

  • Sung, Jiwon;Seo, Jaehyeon;Jo, Yunhui;Yoon, Myonggeun;Hwang, Sang-Gu;Kim, Eun Ho
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1577-1583
    • /
    • 2018
  • Tumor-treating fields therapy involves placing pads onto the patient's skin to create a low- intensity (1 - 3 V/cm), intermediate frequency (100 - 300 kHz), alternating electric field to treat cancerous tumors. This new treatment modality has been approved by the Food and Drug Administration in the USA to treat patients with both newly diagnosed and recurrent glioblastoma. To deliver the prescribed electric field intensity to the tumor while minimizing exposure of organs at risk, we developed an optimization method for the electric field distribution in the body and compared the electric field distribution in the body before and after application of this optimization algorithm. To determine the electric field distribution in the body before optimization, we applied the same electric potential to all pairs of electric pads located on opposite sides of models. We subsequently adjusted the intensity of the electric field to each pair of pads to optimize the electric field distribution in the body, resulting in the prescribed electric field intensity to the tumor while minimizing electric fields at organs at risk. A comparison of the electric field distribution within the body before and after optimization showed that application of the optimization algorithm delivered a therapeutically effective electric field to the tumor while minimizing the average and the maximum field strength applied to organs at risk. Use of this optimization algorithm when planning tumor-treating fields therapy should maintain or increase the intensity of the electric field applied to the tumor while minimizing the intensity of the electric field applied to organs at risk. This would enhance the effectiveness of tumor-treating fields therapy while reducing dangerous side effects.

Polarity Effects of Dielectric Anisotropy on Electro-Optical Characteristics of Fringe Field Twisted Nematic Mode

  • Shin, Sung-Sik;Jhun, Chul-Gyu;Kim, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.288-288
    • /
    • 2009
  • We have studied polarity effects of dielectric anisotropy effects on electro-optical characteristics of a twisted nematic mode driven by fringe electric field, which has wide viewing angle characteristics. Our device is designed as normally black mode between parallel polarizers. The perfect polarization conversion of incident light, which passes through a polarizer, is achieved, when it passes through the twisted liquid crystal (LC) layer. If an electric field is applied, the LC molecules with a positive (or negative) dielectric anisotropy rotate parallel (or perpendicular) to the horizontal component of a fringe electric field as increasing transmittance. From the calculated results, enhanced transmittance of the fringe field-twisted nematic (FF-TN) mode with positive dielectric anisotropy of + 8.2 can be obtained.

  • PDF

Experimental study on nucleate boiling heat transfer enhancement using an electric field (전기장을 이용한 핵비등 열전달 촉진에 관한 실험적 연구)

  • Gwon, Yeong-Cheol;Kim, Mu-Hwan;Gang, In-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1563-1575
    • /
    • 1997
  • To understand EHD nucleate boiling heat transfer enhancement, EHD effects on R-113 nucleate boiling heat transfer in a non-uniform electric field were investigated. The pool boiling heat transfer and the dynamic behavior of bubbles in d.c./a.c. electric fields under a saturated or subcooled boiling were studied by using a plate-wire electrode and a high speed camera. From the pool boiling heat transfer study, the shift of the pool boiling curve, the increase of the heat transfer and the delay of ONB and CHF points to higher heat fluxes were observed. From the dynamic behavior of bubbles, it was observed that bubbles departed away from the whole surface of the heated wire in radial direction due to EHD effects by a nonuniform electric field. With increasing applied voltages, the bubble size decreased and the active nucleation site and the departure number of bubbles showed the different trend. The present study indicates that the EHD nucleate boiling heat transfer is closely connection with the dynamic behavior of bubbles and the secondary flow induced near the heated surface. Therefore, the basic studies on the bubble behavior such as bubble frequency, bubble diameter, bubble velocity and flow characteristics are necessary for complete understanding of the enhancement mechanism of the boiling heat transfer using an electric field.

Effect of Electric Field Frequency on the AC Electrical Treeing Phenomena in an Epoxy/Layered Silicate Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.278-281
    • /
    • 2013
  • The effects of electric field frequency on the AC electrical treeing phenomena in an epoxy/layered silicate (1.5 wt%) were investigated in a needle-plate electrode arrangement. A layered silicate was exfoliated in an epoxy-base resin with AC electric field apparatus. To measure the treeing initiation and propagation- and the breakdown rate, a constant alternating current (AC) of 10 kV with three different electric field frequencies (60, 500, and 1,000 Hz) was applied to the specimen in the needle-plate electrode specimen in an insulating oil bath at $130^{\circ}C$. At 60 Hz, the treeing initiation time was 12 min, the propagation rate was $0.24{\times}10^{-3}$ mm/min, and the morphology was a dense branch type. As the electric field frequency increased, the treeing initiation time decreased and the propagation rate increased. At 1,000 Hz, the treeing initiation time was 5 min, the propagation rate was $0.30{\times}10^{-3}$ mm/min, and the morphology was a dense bush type.

Temperature Dependence of Conductivities of Recyclable Polyethylene and Polypropylene and its Effects on Electric Field Distribution in Power Cable (재활용 가능한 폴리에틸렌과 폴리프로필렌의 전도도 온도의존성과 전력케이블 내의 전계분포에 미치는 영향)

  • Lee, June-Ho;Kong, Tae-Sik;Kim, Seong-Jung;Kwon, Ki-Hyung;Cho, Kyu-Cheol;Hozumi, Naohiro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1881-1887
    • /
    • 2011
  • In this work the recyclable new polyethylene(PE) and polypropylene(PP), which are thermoplastic, have been investigated as the eco-friendly insulating candidates to replace the cross-linked polyethylene (XLPE). The temperature dependence of conductivities of these materials has been measured and its effects on electric field and space charge distribution in polymeric insulated power cable under temperature gradient have been calculated. It is shown that the sensitivity of conductivity to temperature change has more critical influence to determine the electric field distribution in the power cable than the absolute value of conductivity does and it can be said that the temperature dependence is one of most important factors for the power cable design.

The Birefringence of the chalcogenide As-Ge-Se-S thin films by the electric field effects (전계효과에 의한 비정질 칼코게나이드 박막에서의 복굴절 특성)

  • Son, Chul-Ho;Jang, Sun-Joo;Yeo, Cheoi-Ho;Park, Jung-I1;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1727-1729
    • /
    • 2000
  • We has investigated the birefringence by the assisted electric field effect on $As_{40}Ge_{10}Se_{15}S_{35}$ thin films. Photoinduced birefringence has been studied in a chalcogenide material. We induced this thin films using linearly polarized He-Ne laser light(633nm) and detected polarized semiconductor laser light(780nm). To investigate the effect of electric field, various bias voltages applied. The result is shown that the birefringence has a higher value in +2V than others. We obtained the birefringence in the electric field effects by various voltages.

  • PDF

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

Study on Prediction Method for ELF Transient Magnetic Field from Home Appliances (가전기기에서 발생되는 극저주파 과도자계 예측기법 연구)

  • Ju, Mun-No;Yang, Kwang-Ho;Myung, Sung-Ho;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.616-621
    • /
    • 2002
  • With biological effects by ELF (Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. Because the transient magnetic field induces higher current than the power frequency field inside living bodies, transient magnetic field exposure has been much focused. In this paper, it is shown that transient magnetic field from electric home appliances can be characterized as magnetic dipole moment. In this method, the dipole moment vector is assumed by allowing an uncertainty of 6dB in the estimated field. A parameter M that represents biological interaction was applied also. The proposed method was applied to 7 types of appliances (hair drier, heater, VDT, etc.) and their equivalent magnetic dipole moment and harmonic components were estimated. As the results, the useful data for quantifying magnetic field distribution around electric appliances were obtained.

Enhanced Crystallization of Amorphous Silicon using Electric Field

  • Song, Kyung-Sub;Jun, Seung-Ik;Park, Sang-Hyun;Park, Duck-Kyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.243-246
    • /
    • 1997
  • A new technique for low temperature crystallization of amorphous silicon, called field aided lateral crystallization(FALC) was attempted. To demonstrate the concept of FALC, thin layer of nickel(30${\AA}$) was deposited on top of amorphous silicon film and the electric field was applied during the crystallization. The effects of electric field on the crystallization behavior of amorphous silicon film were investigated.

  • PDF

Effect of Electric Field Frequency on the AC Electrical Treeing Phenomena in an Epoxy/Reactive Diluent/Layered Silicate Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.87-90
    • /
    • 2014
  • The effects of electric field frequency on the ac electrical treeing phenomena in an epoxy/reactive diluent/layered silicate (1.5 wt%) were carried out, in needle-plate electrode arrangement. A layered silicate was exfoliated in an epoxy base resin, by using our ac electric field apparatus. To measure the treeing propagation rate, constant alternating current (AC) of 10 kV with three different electric field frequencies (60, 500 and 1,000 Hz) was applied to the specimen, in needle-plate electrode arrangement, at $30^{\circ}C$ of insulating oil bath. As the electric field frequency increased, the treeing propagation rate increased. At 500 Hz, the treeing propagation rate of the epoxy/PG/nanosilicate system was $0.41{\times}10^{-3}$ mm/min, which was 3.4 times slower than that of the epoxy/PG system. The electrical treeing morphology was dense bush type at 60 Hz; however, as the frequency increased, the bush type was changed to branch type, having few branches, with very slow propagation rate.