• 제목/요약/키워드: electric excitation

검색결과 213건 처리시간 0.026초

심장 부정맥 시 vortex breakup 현상에 대한 수치적 연구 (Computational analysis of vortex breakup in arrhythmias)

  • 심은보;권순성;최승윤
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.496-497
    • /
    • 2008
  • In this study, we present the computational analysis of cardiac arrhythmias that is the major cause of human sudden cardiac death. First, electric excitation and condution in one dimensional cardiac tissue model is solved and the results on condution block are represented. In two dimensional model, vortex daynamics in cardiac tissue is analyzed to delineate the breakup phenomenon inducing ventricular fibrillation. We also simulated a three dimenional heart model to see the vortex breakup and explained the mechanism in physiological aspect.

  • PDF

임피턴스헤드로 진동계측시 변환기의 부착영향을 보상하는 방법에 관한 연구 (A Study on the Compensation of Transducer Effects for the Measurement of Vibration with an Impedance Head)

  • 이현엽;박재영
    • 소음진동
    • /
    • 제5권1호
    • /
    • pp.117-122
    • /
    • 1995
  • The transfer matrix method is proposed to compensate the attachment effect of a piezo-electric impedance head. To validate the proposed method, an experiment is carried out for axial vibration of a uniform rod for which an analytical solution is known. The impedance head is attached to the test rod by a stud and is connected to the exciter. The frequency response function is mesured by applying random excitation from the electro-magnetic exciter. The frequency response function compensated by the method proposed in this research shows good agreement with the analytical solution.

  • PDF

압착모드하에서 ER유체의 빙햄특성 및 댐핑력 제어 (Bingham Properties and Damping Force Control of an ER Fluid under Squeeze Mode)

  • 홍성룡;최승복
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.37-45
    • /
    • 2002
  • This paper presents the field-dependent Bingham characteristics and damping force control of an electro-rheological (ER) fluid under squeeze mode operation. The squeeze force of the ER fluid due to the imposed electric field is analyzed and an appropriate size of the disk-type electrode is devised. On the basis of the theoretical model of the ER fluid under squeeze mode operation, the yield stress and response speed of the ER fluid are distilled from the time responses of squeeze force to the step electric potentials. Measured squeeze forces under various excitation conditions are compared with the predicted ones from Bingham model and time constant obtained at the transient response test. In addition, the controllability of the field-dependent damping force of the ER fluid under squeeze mode is experimentally demonstrated by implementing simple PID controller.

직렬 및 병렬 Sin+Cos 전력계통안정화장치 (Series and Parallel Sin+Cos PSS)

  • 이상성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.87-89
    • /
    • 2005
  • This paper proposes new series and parallel Sin+Cos PSS(power system stabilizer) for the purpose to improve the existing PSS1A's performance. The purpose of PSS is used to enhance damping of power system oscillations through injection of auxiliary signal for an excitation control terminal. The Proposed series and Parallel Sin+Cos PSS is connected adding the Sin+Cos terms additionally with serial and with parallel connection in a conventional PSS1A. The proposed controller is aim to considering of a damping of oscillation when it changes parameter fluctuations or operational load variations in a power system. The object of electric power system is KEPCO system and the voltage of power transmission line is a 154kV and a 345kV. The PSCAD/EMTDC package is used to authorize the effect of the proposed controller. Simulations were shown by and compared with the waveforms for frequency, voltage and electric power.

  • PDF

전동식 지게차의 진동저감에 대한 연구 (A Study on the Vibration Reduction of a Forklift with an Electric Motor)

  • 박철준;임형빈;정진태
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1145-1151
    • /
    • 2007
  • In this paper, vibration sources of an electric forklift are identified and the forklift vibrations are reduced by structural modification. For vibration identification, vibration signals are measured by an accelerometer when the forklift is moving. These signals are presented in a waterfall plot in order to find the dependency of frequency components on the forklift speed. It is found that main vibration source is tire pattern excitation. From some experiments and finite element analyses, it is also found that resonances occur because the natural frequencies of the forklift exist in usual driving speed range. To shift the natural frequencies outside the driving speed range, the connection parts between main body and loader are modified to increase stiffness. It is verified that considerable amount of vibration are reduced by the structural modification.

The Field of Power/Ground Planes influenced by the HPEM Source, and its Damage Reduction

  • Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.406-410
    • /
    • 2012
  • This paper looks into the field inside the wide rectangular box structure that is excited by the High Power Electromagnetic(HPEM) source as a potential threat to electric grid and communication networks causing malfunction or destruction. The rectangular box is assumed power/ground planes and its internal field is calculated by the cavity model with the lightning strike excitation as an HPEM pulse. The accuracy of the calculation method employed here is validated through a $156mm{\times}106mm{\times}508{\mu}m$ parallel metallic plate case which is manufactured and tested, and is applied to the size of a building. With the help of the cavity model that takes into account loading, the level of the electric field is shown to decrease when a metal pillar is loaded between the power and ground planes.

서인천 복합화력 발전소의 PSS 파라메터 Tuning (Field test Results for PSS Parameter Tuning in Seo-Incheon Power Plant)

  • 신정훈;김태균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1143-1146
    • /
    • 1998
  • Static excitation systems with high gain and fast response times greatly aid transient stability. but at the same time tend to reduce small signal stability. The objective of the power system stabilizer(PSS) control is to provide a positive contribution to damping of the generator rotor angle swings, which are in a broad range of frequencies in the power system. Therefore, this paper shows the field test results for the GE's EX2000 PSS tuning on units at Seo-Incheon power plant. The test is to verify that the PSS response meets GE's design, criteria. The responses of generator terminal voltage, active power, field voltage and current were analyzed and PSS gain was tuned by 10 finally.

  • PDF

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.

Modeling and analysis of a cliff-mounted piezoelectric sea-wave energy absorption system

  • Athanassoulis, G.A.;Mamis, K.I.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.53-83
    • /
    • 2013
  • Sea waves induce significant pressures on coastal surfaces, especially on rocky vertical cliffs or breakwater structures (Peregrine 2003). In the present work, this hydrodynamic pressure is considered as the excitation acting on a piezoelectric material sheet, installed on a vertical cliff, and connected to an external electric circuit (on land). The whole hydro/piezo/electric system is modeled in the context of linear wave theory. The piezoelectric elements are assumed to be small plates, possibly of stack configuration, under a specific wiring. They are connected with an external circuit, modeled by a complex impedance, as usually happens in preliminary studies (Liang and Liao 2011). The piezoelectric elements are subjected to thickness-mode vibrations under the influence of incident harmonic water waves. Full, kinematic and dynamic, coupling is implemented along the water-solid interface, using propagation and evanescent modes (Athanassoulis and Belibassakis 1999). For most energetically interesting conditions the long-wave theory is valid, making the effect of evanescent modes negligible, and permitting us to calculate a closed-form solution for the efficiency of the energy harvesting system. It is found that the efficiency is dependent on two dimensionless hydro/piezo/electric parameters, and may become significant (as high as 30 - 50%) for appropriate combinations of parameter values, which, however, corresponds to exotically flexible piezoelectric materials. The existence or the possibility of constructing such kind of materials formulates a question to material scientists.

Power output and efficiency of a negative capacitance and inductance shunt for structural vibration control under broadband excitation

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.223-246
    • /
    • 2015
  • Structural vibration control using a piezoelectric shunt is an established control technique. This technique involves connecting a piezoelectric patch, which is bonded onto or embedded into the vibrating structure, to an electric shunt circuit. Thus, vibration energy is converted into electrical energy and is dissipated through a network of electrical components. Different configurations of shunt have been researched, among which the negative capacitance-inductance shunt has gained prominence recently. It is basically an analog, active circuit consisting of operational amplifiers and passive elements to introduce real and imaginary impedance on the vibrating structure. The present study attempts to model the behavior of a negative capacitance-inductance shunt in terms of power output and efficiency using circuit modeling software. The shunt model is validated experimentally and is used to control the structural vibration of an aluminum beam, connected to a pair of piezoelectric patches, under broadband excitation. The model is also used to determine the optimal parameters of a negative capacitance-inductance shunt to increase the efficiency and predict the voltage output limit of op-amp against the supply voltage.