• Title/Summary/Keyword: electric excitation

Search Result 213, Processing Time 0.028 seconds

Dynamic response for electromechanical integrated toroidal drive to electric excitation

  • Xu, Lizhong;Hao, Xiuhong
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.635-650
    • /
    • 2007
  • In this paper, the equivalent exciting force caused by electric excitation is derived. By dividing load and displacement vectors into mean values and time-varying ones, the dynamic equations of the system are transformed into linear ones for time-varying portion of the displacements. The analytical equations of the forced time responses of the drive system to electric excitations are obtained. Using the Laplace transformation, the transfer function of the drive system is obtained. These equations are used to analyze the time and frequency responses of the drive system to the electric excitation. It is known that electric excitation can cause forced responses of the drive system, the total dynamic responses are decided by three phase exciting voltages, exciting frequency and natural frequencies of the drive system, and the drive parameters have obvious influence on the time and frequency responses.

The Development of Control & Diagnostic Technique for Digital Excitation System (여자시스템 제어 및 진단기법 개발)

  • Shin, Man-Su;Ryu, Ho-Sun;Lee, Ju-Hyun;Lim, Ick-Hun;Kim, Bong-Seok;Song, Seong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2597-2599
    • /
    • 2005
  • This research is developing the technique of troubleshooting in digital excitation system of nuclear power plant. and the design technique of excitation system is thought to be advanced through this research. Especially, the development of simulator enables to accumulate digital control technique, more analysis for excitation system algorithm. etc helps to develop other nuclear power plants.

  • PDF

A Study of Function Verification of Digital Excitation System with Real Time Simulator (시뮬레이터 탑재형 디지털 여자시스템 기능검증 시험에 관한 연구)

  • Ryu, Ho-Seon;Shin, Man-Su;Lee, Joo-Hyun;Lim, Ick-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1191-1192
    • /
    • 2011
  • We released new triple redundant digital excitation system with real time generator-turbine simulator. One of its great merits is the real time generator-turbine simulator when it was compared with the other products. If excitation system is tripped by unexpected faults, Maintenance man can do easily performance test of digital excitation control board, sequence relay and thyristor switching device of phase controlled rectifier without manufacturer's support. For the verification of this system, It was tested with an actual excitation system implemented on 5kVA M-G Set. After finishing the tests, the trial product will be installed and operated at a 500MW thermal power plant.

  • PDF

Predictive current control for fast response of generator excitation system (발전기 여자 시스템 속응성 개선을 위한 예측제어 전류 기법)

  • Lee, B.K.;Moon, S.P.;Choi, J.H.;Rhew, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.416-418
    • /
    • 1997
  • Stable power source and fast control response are important for the generator excitation system. To stabilize the control of excitation circuit the PI controller for excitation current has been used. But the response of the system with this conventional control technique is very poor, especially in transient response with a predictive current control, the response of the excitation system can be improved. In this study, it is verified by the PSIM simulation.

  • PDF

Development of Analog Controlled Transformer-fed Static Excitation System (정지형 여자제어 시스템 개발)

  • Lim, I.H.;Rhew, H.S.;Jung, C.K.;Rhew, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2184-2186
    • /
    • 1997
  • Potential-source controlled rectifier excitation system has been developed by KEPRI for synchronous generator in YOUNG-DONG thermal power plant. This paper describes the characteristics of redundant control system and transfer function of dual channel excitation control system. This system has been using a analog and digital circuit devices(hybrid type)

  • PDF

Dynamics of electric system for electromechanical integrated toroidal drive under mechanical disturbance

  • Hao, Xiuhong;Xu, Lizhong
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.189-207
    • /
    • 2009
  • Dynamics of the electric system for the toroidal drive under mechanical disturbance is presented. Using the method of perturbation, free vibrations of the electric system under mechanical disturbance are studied. The forced responses of the electric system to voltage excitation under mechanical disturbance are also presented. We show that as the time grows, the resonance vibration caused by voltage excitation still exists and the vibrations caused by mechanical disturbance are enlarged. The coupled resonance vibration caused by mechanical disturbance and voltage excitation is discussed. The conditions of the occurrence of coupled resonance are studied.

EXCITATION SYSTEM MODERNIZATION OF THERMAL POWER PLANT

  • Kim, Chan-Ki;Kim, Jang-Mok;Rhew, Ho-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2024-2026
    • /
    • 1998
  • Many power plants built 20-30 years ago are facing problems associated with the excitation system used for controlling generator output voltage. After years of reliable operation, generation is experiencing increased down time due to maintenance associated with the exciting excitation equipment. Reliability of the excitation system has become an issue, especially where many of these generation plants may be critical to the internal processes used for manufacturing. Wear out mechanisms such as those associated with the wire wound rheostat the electromechanical voltage regulator, insulation failures of the rotating exciter and commutator deterioration have become real problems typical of many older installations. These are some of the issues that are affecting system reliability for older power plants. This paper will address typical problems associated with the old excitation systems and the justification for a replacement static excitation system used in many Paper Mills.

  • PDF

A Comparative Study Between Diffusive-thermal and Buoyancy-driven Self-excitations in Laminar Free Jet Flames with Applied DC Electric Fields (직류전기장이 인가된 층류제트화염에서 물질 -열 확산과 부력에 의한 진동비교에 관한 연구)

  • Han, Jong-Kyu;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Tae-Hyung;Park, Jong-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.37-47
    • /
    • 2012
  • Experimental study on comparison of diffusive-thermal self-excitation with buoyancy-driven one due to accumulation of partially premixed, preheated mixture in front of edge flame was conducted in horizontally and vertically injected laminar free-jet flames with an applied DC electric field of -10 kV. The application of horizontal injection method with the DC electric field to jet flames was experimentally designed to suppress heat-loss-induced self-excitation and thereby to highlight the definite difference between both diffusive-thermal and buoyancy-driven self-excitations with the same order of O(1.0 Hz), in that diffusive-thermal self-excitation has not been so far found experimentally in laminar jet flames. Flame stability maps in vertically and horizontally injected jet flames are presented. The distinct modes of individual self-excitation are shown to be well described by their own phase diagrams. The results show that buoyancy-driven self-excitation due to the accumulation of partially premixed, preheated mixtures in front of edge flame is branched from the buoyancy-induced self-excitation with O(10 Hz) due to a flame flicker. Once the buoyancy-driven self-excitation appears, it suppresses buoyancy-induced as well as diffusive-thermal self-excitation. The key characteristics for individual self-excitation are discussed and their functional dependencies of Strouhal number upon related physical parameters are also presented.

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.

Hybrid Phase Excitation Method for Improving Efficiency of 7-Phase BLDC Motors for Ship Propulsion Systems

  • Park, Hyung-Seok;Park, Sang-Woo;Kim, Dong-Youn;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.761-770
    • /
    • 2019
  • This paper proposes a hybrid phase windings excitation method for improving the efficiency of a 7-phase brushless DC (BLDC) motor in the electric propulsion system of a ship. The electrical losses of a BLDC motor system depend on the operating region and the number of excited phase windings (2-phase, 4-phase or general 6-phase windings). In this paper the operating region and torque/speed characteristics according to the motor rotation speed and propeller load are analyzed for a number of excitation methods. In addition, it analyzes the electrical losses of the system under each of the excitation methods in the entire operating region of the motor. In every sampling time, the proposed control method calculates the electrical loss of the system for each of the excitation methods and operates a 7-phase BLDC motor by selecting the excitation method that results a decreased electrical loss at the operating speed. The usefulness of the proposed control algorithm is verified through experimental results.