• Title/Summary/Keyword: electric energy generation

Search Result 837, Processing Time 0.028 seconds

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

A New ZVS Bi-directional CUK DC/DC Converter for a Car Dual Power Supply System (자동차 이중전원 시스템을 위한 새로운 ZVS 양방향 CUK DC/DC 컨버터)

  • Lee S. R.;Lee S. W.;Ko S. H.;Mun J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.355-358
    • /
    • 2004
  • Currently, to overcome the limit of a 14V power supply system and to enhance the stability of this system high and to make the fuel efficiency better, a research development of a 42V power supply system is actively the progress. As an intermediate step to change into an unity power supply system, a 42V/14V dual power supply system uses a DC/DC Converter as one of structure elements. Considering the main electric power sources in the next generation of the car is a 42V system a 14V power supply system has advantages as follows : In be managed efficiently and to increase the redundancy at start, to jump start with any vehicles, etc. We need the introduction of a hi-directional converter that can flow the energy each other in a dual 42V-l2V system. This paper proposed the ZVS hi-directional CUK DC/DC converter which decrease the weight with the size of the DC/DC Converter and minimize the loss when the switching happen. In this paper, a circuit design method and an action principle of the circuit was proposed. To verify the proposed circuit, a comprehensive evaluation with theoretical analysis, simulation results is presented.

  • PDF

Thermodynamic Analysis of Trilateral Cycle Applied to Exhaust Gas of Marine Diesel Engine (선박용 디젤엔진의 배기가스에 적용된 3 변 사이클의 열역학적 분석)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.937-944
    • /
    • 2012
  • The thermodynamic characteristics of a trilateral cycle with water as a working fluid have been theoretically investigated for an electric generation system to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when a heat source was given, the efficiencies of energy and exergy were maximized by the specific conditions of the pressure and mass flow rate for the working fluid at the turbine(expander) inlet. In this case, as the condensation temperature increased, the volume expansion ratio of the turbine could be reduced properly; however, the exergy loss of the heat source and exergy destruction of the condenser increased. Therefore, in order to recover the waste exergy from the topping cycle, the combined cycle with a bottoming cycle such as an organic Rankine cycle, which is utilized at relatively low temperatures, was found to be useful.

Properties of Synthesis LSCF Cathode with pH Control using Oxalate Method (Oxalate법으로 합성한 LSCF의 pH 변화에 따른 공기극 특성)

  • Lee, Mi-Jai;Choi, Byung-Hyun;Kim, Sei-Ki;Lee, Mi-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.17-18
    • /
    • 2007
  • Solid oxide fuel cells are clean, pollution-free technology for the electrochemical generation of electricity at high efficiency. Specially, the polarization resistance between electrolyte and electrode of SOFC unit cell is of importance, because it is desirable to develop SOFC operating at intermediate temperature below $800^{\circ}C$. The LSCF cathode prepared using modified oxalate method was investigated with different electrolyte. A precursor was prepared with oxalic acid, ethanol and $NH_4OH$ solution. The LSCF precursor was prepared at $80^{\circ}C$, and pH control was 2, 6, 8, 9 and 10. The precursor powder was calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. The crystal of LSCF powders show single phase at pH 2, 6, 8 and 9, and the average particle size was about $3{\mu}m$. The LSCF cathode with heat treatment at $1200^{\circ}C$ showed a plot of electric conductivity versus temperature. Unit cell prepared from the LSCF cathode, buffer layer between cathode and electrolyte and the LSGM, YSZ, ScSZ and CeSZ electrolyte. Also interface reaction between LSCF, buffer layer and electrolyte were measured by EPMA and the polarization resistance for unit cell with cycle measure using a Solatron 1260 analyzer.

  • PDF

Heat Dissipation Technology of IGBT Module Package (IGBT 전력반도체 모듈 패키지의 방열 기술)

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Kim, Young-Hun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

Investigation of Spark Discharge in Water as a Source of Mechanical Actuation

  • Taylor, Nathaniel D.;Fridman, Gregory;Fridman, Alexander;Dobrynin, Danil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.258-258
    • /
    • 2014
  • Spark discharge in water generates shockwaves which have been utilized to generate mechanical actuation for potential use in pumping application. Discharge pulses of several microseconds generate shockwaves and vapor bubbles which subsequently displace the water for a period of milliseconds. Through the use of a sealed discharge chamber and metal bellow spring, the fluid motion can be used create an oscillating linear actuator. Continuous actuation of the bellow has been demonstrated through the use of high frequency spark discharge. Discharge in water forms a region of high electric field around the electrode tip which leads to the creation of a thermal plasma channel. This process produces fast thermal expansion, vapor and bubble generation, and a subsequent shockwave in the water which creates physical displacement of the water [1]. Previous work was been conducted to utilize the shockwave effect of spark discharge in water for the inactivation of bacteria, removal of mineral fouling, and the formation of sheet metal [2-4]. Pulses ranging from 25 to 40 kV and 600 to 900 A are generated inside of the chamber and the bellow motion is captured using a slow motion video camera. The maximum displacements measured are from 0.7 to 1.2 mm and show that there is a correlation between discharge energy input to the water and the displacement that is generated. Subsequent oscillations of the bellow are created by the spring force of the bellow and vapor in the chamber. Using microsecond shutter speed ICCD imaging, the development of the discharge bubble and spark can be observed and measured.

  • PDF

Optimal Voltage Management Based on the Flexible, Reliable, Intelligent and Energy-conservative Distribution System (FRIENDS) (차세대 전기에너지공급시스템(FRIENDS)에 의한 최적 전압관리방안에 관한 연구)

  • 노대석
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.409-417
    • /
    • 2003
  • In recent years, better quality in power electric services is being required with the development of information industries and the improvement of living standards. Also, the small scaled dispersed storage and generation (DSG) systems are being interconnected with the distribution systems and customers by the influence of the recent issues such as deregulation and global environmental problems in power system. Under these circumstances, it is very important to maintain the customer voltages within allowable limits for the distribution system which is located at the most sensitive part in the power system. To overcome these problems, this paper shows the basic concepts of FRIENDS which is considered as one of the power delivery system in the near future and also presents an evaluation method on the impacts of customer voltages by operation models of FRIENDS. The FRIENDS can change the system configuration in a flexible manner by using the static switches and offer the different power qualities in power services through the power quality control centers which play the most important role in FRIENDS. Numerical examples are shown in order to indicate the efficiency of the proposed method.

  • PDF

Generation of neutral stream from helicon plasma and its application to Si dry etching (헬리콘 플라즈마로부터 중성입자 흐름의 생성 및 이를 이용한 실리콘의 건식식각)

  • 정석재;양호식;조성민
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.390-396
    • /
    • 1998
  • Neutral stream was generated from Helicon plasma source and was applied to etch silicon for the purpose of preventing physical and electrical damages from the bombardment of charged particles with high translation energy. By installing a permanent magnet and applying positive bias beneath the substrate, the cusp-magnetic and electric fiddles were generated in order to remove the charged particles from the downstream plasma. As a result, the electron density and ion density in the vicinity of the substrate were reduced by 1/1000 and 1/10, respectively. The directional etching of silicon was observed and the etch rate was found to be very low to below 100 $\AA$/min at a pressure of $8.5{\times}10^{-4}$ Torr, when $Cl_2$ and 10% $SF_{sigma}$ etchant gases were used.

  • PDF