• Title/Summary/Keyword: electric current pulse

Search Result 227, Processing Time 0.022 seconds

Implementation of Simplified Electronic Measuring Devices Using Java Applets (자바 애플릿을 이용한 단순화된 전자계측장비의 구현)

  • Kim, Dongsik;Moon, Ilhyun;Woo, Sangyeon
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.6
    • /
    • pp.69-77
    • /
    • 2007
  • In this paper we implement main functions of electronic measuring devices, which are essential to design electric/electronic virtual laboratories on the Web. The implemented virtual electronic measuring devices such as virtual analog multimeter(VAM), virtual function generator(VFG), virtual oscilloscope(VOSC) enable the learners to perform the virtual experiments on the Web by simple mouse clicks. In order to show their validity virtual experiments for understanding how to use them are designed. The virtual experiments for measuring resistance(OHM), AC/DC Voltage(ACV/DCV) and DC Current(DCA) by the VAM are illustrated. In addition, the learners can change the frequency of the signal generated from the VFG and measure by the VOSC several types of the signals generated from the VFG such as triangular, pulse, sinusoidal waveforms. The VOSC can measure voltage and current through two channels of it and provide the learners with additional functions such as zooming, trigger, cursor, summing of waveforms. Since the virtual electronic measuring devices have been implemented as forms of Java classes, various types of applications are available according to the structures of virtual laboratories.

  • PDF

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

Effect of Fusion Procedure on the Development of Embryos Produced by Somatic Cell Nuclear Transfer in Hanwoo (Korean Cattle) (한우에서 융합방법이 체세포 핵이식 수정란의 발달에 미치는 영향)

  • Im, G.S.;Yang, B.S.;Park, S.J.;Chang, W.K.;Park, C.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.365-373
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the fusion pulses and fusion media on fusion rate and the development of embryos produced by somatic cell nuclear transfer in Hanwoo (Korean cattle). Nuclear donor cumulus and fetal fibroblast cells were cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at 38.5$^{\circ}C$ in a humidified atmosphere of 5% $CO_2$in air. The in vitro matured oocytes were enucleated and then the isolated donor cells were introduced. The cumulus cell and cytoplast were fused using one pulse of 70 volts for 40$mutextrm{s}$, two pulses of 70 volts for 40$mutextrm{s}$ and one pulse of 180 volts for 15$mutextrm{s}$. The fetal fibroblast cell and cytoplast were fused using one pulse of 180 volts for 15$mutextrm{s}$ or 30$mutextrm{s}$. The cumulus cell and cytoplast were fused using mannitol and Zimmerman cell fusion medium (ZCFM) as a fusion medium. The fused embryos were activated after the fusion with 10 $\mu$M calcium ionophore for 5 min and 2 mM 6-dimethyl- aminopurine for 3 h. The nuclear transfer embryos were cultured in 500 ${mu}ell$ well of modified CR1aa supplemented with 3 mg/$m\ell$ BSA in th $\varepsilon$ four well dish cove red with mineral oil. After 3 days culture, culture medium was changed into modified CRlaa medium containing 1.5 mg/$m\ell$ BSA and 5% FBS for 4 days. The incubation environment was 5% $CO_2$, 5% $O_2$, 90% $N_2$ at 38.5$^{\circ}C$. When the cumulus cells were fused with enucleated oocytes by three different fusion pulses, one pulse of 180 volts for 15 $mutextrm{s}$ yielded the highest fusion rate and developmental rate to blastocyst among the pulses (P<0.05). When the fetal fibroblast cells were fused with enucleated oocytes, one pulse of 180 volts for 30$mutextrm{s}$ yielded significantly higher fusion rate compared with that for 15 $mutextrm{s}$(P<0.05). The present result indicates that the fusion rate between karyoplast and cytoplast was affected by the cell type and the optimal fusion condition was different according to cell type or size. When the fusion was conducted by the use of mannitol and ZCFM, the fusion rate was 71.2% and 65.8%, respectively. The developmental rates to blastocyst were 37.8% and 39.8%, respectively. There was no significant difference between two fusion media in the developmental rate of cumulus cell nuclear transfer embryos. These results indicate that optimal electric current should be selected according to cell type.

  • PDF

Studies on the Transport of Acetic Acid by Electrodialysis (전기투석에 의한 초산의 이동특성 연구)

  • 최동민;구윤모
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.360-366
    • /
    • 1996
  • Electrodialysis of acetic acid was studied to find out the trend of the transport of organic acids through ultrafiltration and ion exchange membranes. The net transport rate of acetic acid was determined from the electro-migration velocity relative to the electro-osmotic flow rate through the membrane. Electro-osmosis flows through ultrafiltration membranes were from the anodic side to the cathodic side in the presence of electric field. The surface of ultrafiltration membrane was measured by the electro-osmotic flow to be charged negatively. Different transport behaviors of acetic acid were found with the ultrafiltration membranes of different materials. In general, regenerated cellulose membranes (YM series) were more effective than polysulfone membranes (PM series) for the transport of acetic acid. The transport of acetic acid was affected by electric strength, distance between the electrodes, surface area of electrode, temperature, and pore size of membrane. The transport rate through the ion exchange membrane was 1.5 to 3 times of those through the ultrafiltration membranes at the constant current of 150 mA in the experimental ranges. The transport rate of acetic acid through the ion exchange membrane increased by 10% with a pulse electric field of 10 sec/hr.

  • PDF

The Effect of Grain Size and Cooling Rate on Phase Transformation for Mechanically Alloyed Ni-36at.%Al Alloy (기계적 합금화된 Ni-36at.%Al 합금의 상변태에 미치는 결정립 크기 및 냉각속도의 영향)

  • Kim, Seong-Uk;Kim, Dae-Geon;Kim, Ji-Sun;An, In-Seop;Kim, Yeong-Do
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.642-647
    • /
    • 2000
  • Nanocrystalline NiAl alloy containing 36at.%Al was synthesized by mechanical alloying (MA). Synthesized powder was sintered by a pulse electric current sintering (PECS) facility. Effecting parameters on the phase transformation were discussed in terms of cooling rate and time spent on heat treatment. The behavior of phase transformation for sintered parts was examined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) method. Microstructure was observed by scanning electron microscopy (SEM). Martensitic lattice parameter and volume fraction was calculated by direct comparison method in X-ray diffraction analysis.

  • PDF

A Study on the Curvilinearly Shaping Method for Wide-Band Wire Antennas (와이어 안테나의 광대역화를 위한 형상 굴곡화에 관한 연구)

  • Park, Eui-Joon;Lee, Young-Soon;Kim, Byung-Chul;Chung, Hoon;Cho, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.454-463
    • /
    • 2000
  • A method is presented to alter the geometry of the conventional linearly shaped wire antenna for increasing its bandwidth. The synthesis is two-demensionally symmetric and is based on the minimization of frequency-dependence of the boresight far-field electric field intensity. The current distribution on the wire is calculated by Galerkin method using pulse functions. The shaping limitation for wide-band characteristics is still found because of standing waves due to reflected waves from antenna ends. The limitation overcome by a distribution of resistive loads near ends of wire. The antenna loaded resistively has flat characteristics satisfying a power gain of $6.5\pm1.1$dBi and VSWR of at most 2 over 10:1 bandwidth. The results are verified by comparing with similar results for the conventional linear V-dipole.

  • PDF

Characteristic of VSI Driven by Source Synchronous Type for the Utility Interactive using a Photovoltaic Generation for the LED Luminaire Emergency Exit Sign Operation (LED 비상 유도등 동작을 위한 태양광발전 계통연계 전원동기 방식의 전압형 인버터 구동 특성)

  • Hwang, Lark-Hoon;Na, Yong-Ju
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.420-428
    • /
    • 2018
  • In this paper, represented uninterruptible power supply (UPS) equipment maintaining constant output voltage, the proposes a photovoltaic system constructed with a step up boosting chopper and single phase pulse width modulation (PWM) voltage source inverter. as power source disconnection, voltage variation and output current variation with load variation. This system is driven by being synchronized voltage fed inverter and AC source, and in the steady state of power source charge battery connected to DC side with solar cell using a Photovoltaic that it was so called constant voltage charge. It can be results of saving electric power, and through a normal operation of energy storage system (ESS), the system operated the LED a calling on signal changes at the airport in an efficient manner. In addition, better output waveform was generated because of PWM method, and it was proved to test by experiment maintained constant output voltage regardless of AC source disconnection, load variation, and voltage variation of AC power source.

Synthesis and Characteristics of CU/CUO Nanopowders by Pulsed Wire Evaporativn(PWE) Method (전기폭발법에 의한 CU/CUO 나노분말의 제조 및 분말특성)

  • Maeng, D.Y.;Rhee, C.K.;Lee, N.H.;Park, J.H.;Kim, W.W.;Lee, E.G.
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.941-946
    • /
    • 2002
  • Both Cu and Cu-oxide nanopowders have great potential as conductive paste, solid lubricant, effective catalysts and super conducting materials because of their unique properties compared with those of commercial micro-sized ones. In this study, Cu and Cu-oxide nanopowders were prepared by Pulsed Wire Evaporation (PWE) method which has been very useful for producing nanometer-sized metal, alloy and ceramic powders. In this process, the metal wire is explosively converted into ultrafine particles under high electric pulse current (between $10^4$ and $10^{ 6}$ $A/mm^2$) within a micro second time. To prevent full oxidations of Cu powder, the surface of powder has been slightly passivated with thin CuO layer. X-ray diffraction analysis has shown that pure Cu nanopowders were obtained at $N_2$ atmosphere. As the oxygen partial pressure increased in $N_2$ atmosphere, the gradual phase transformation occurred from Cu to $Cu_2$O and finally CuO nanopowders. The spherical Cu nanopowders had a uniform size distribution of about 100nm in diameter. The Cu-oxide nanopowders were less than 70nm with sphere-like shape and their mean particle size was 54nm. Smaller size of Cu-oxide nanopowders compared with that of the Cu nanopowders results from the secondary explosion of Cu nanopowders at oxygen atmosphere. Thin passivated oxygen layer on the Cu surface has been proved by XPS and HRPD.

PECS Process for Fabrication of Nanostructured Fe-Co Softmagnetic Alloy (나노구조 Fe-Co 연자성 합금의 제조를 위한 PECS 공정 연구)

  • Hong, Sung-Soo;Kim, Dae-Gun;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.378-384
    • /
    • 2001
  • In this study, nanostructured Fe-Ce powder with grain size of 10nm was produced by MA (mechanical alloying) process and was consolidated by PECS (pulse electric current sintering) process for the fabrication of bulk nanostructured Fe-Co softmagnetic alloy. PECS process was performed at 700, 800, 900 and $^1000{\circ}C$ with holding time ranging from 0 to 15min. The effectiveness of PECS Process to Produce nanostructured bulk specimens was estimated. The optimal PECS process condition for nanostructured Fe-Co powders was found through observing the change of relative density and microstructure with sintering temperature and holding time. The magnetic properties of the sintered specimens were evaluated through the measurement of coercivity and saturation magnetization.

  • PDF

Impulse breakdown Characteristics in SF6/N2, Gas Mixtures with a Temperature Variation (온도변화에 따른 SF6/N2 혼합가스의 임펄스 절연파괴특성)

  • Li, Feng;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.79-86
    • /
    • 2008
  • This paper presents the experimental results of impulse breakdown characteristics in $SF_6/N_2$ gas mixtures under a highly non-uniform electric field with a change in temperature. The test temperature ranges from -25[$^{\circ}C$] to 25[$^{\circ}C$]. The processes of impulse preliminary breakdown developments were analyzed by the measurements of current pulse and luminous signals. As a result, the temperature dependance of breakdown voltage for the negative polarity was much stronger than that for the positive polarity. When increasing the temperature, The leader stepping time for the negative polarity was shown to be longer than that for the positive polarity. The results presented in this paper can be used as a useful information in designing the gas insulation lines with prominent ability for lightning surge.