• Title/Summary/Keyword: electric current pulse

Search Result 227, Processing Time 0.034 seconds

Electric current pulse supply unit use pulse power technique (펄스파워 기술을 이용한 전류펄스 공급장치)

  • Park, Sang-Gug
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.791-793
    • /
    • 2012
  • This paper describes development of the electric current pulse supply unit. This system is used to improve the problems of non-uniformed solidification structure, which is made in melting process of light weight alloy. The power supply switch of our system use MOSFET switch and gate control use PWM signal. We have simulated the designed circuit and made to PCB for the current pulse supply unit. The power circuits are simulated by a PSIM software. In the experiments, we have confirmed that the experiment results are follow the simulation results very well.

  • PDF

A Study on the Detection of Indication of Accident in Electric Equipments with Incandescent Lamps Using Current Monitor (전류 모니터를 이용한 백열등 부하 전기설비에서 사고 징후 검출에 관한 연구)

  • Jee, Seung-Wook;Ok, Kyung-Gea;Kim, Shi-Kuk;Lee, Chun-Ha;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.109-115
    • /
    • 2009
  • This paper describes an early detection for indication of electric accident using current waveform which is measured in electric equipments consisted incandescent lamps. At first, it analyzes characteristics of current monitor in resistive electric circuit. In second, the electric equipment is consisted of incandescent lamps. And the electric accident is simulation of tracking according to KS C IEC(Korea Standard C International Electrostatic Commission) 60112 at some part of the electric equipment. The indication of the electrical accident is detected to analyzing current waveform measured by current monitor. As the tracking breakdown, electric accident, processes, as current pulse is bigger and ratio of appearance also is increased irrespective of amount of load.

Electro-Osmotic Dewatering under Electro-Osmotic Pulse Technology

  • Kim, Jitae;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.423-433
    • /
    • 2020
  • Direct current (DC) electric fields have been used for electro-osmotic dewatering. Under DC conditions, however, the electrical contact resistance between the electrode and the dewatering material increases considerably during the process of dewatering. Such a circumstance hinders the continuation of effective electro-osmotic dewatering. To reduce this hindrance, an applied pulse electric field with periodic reversals of the electrode polarity should improve electro-osmotic dewatering. In this study, electro-osmotic dewatering under pulse conditions was experimentally investigated for electrode polarity reversals. During the dewatering process, the pulse electric field was able to reduce the hindrance caused by the DC, resulting in an increased final dewatered amount relative to that under a DC electric field. For a constant applied voltage, the reversed polarity condition, under which the electric current passing through the material was almost unchanged with time, yielded the maximum final dewatered amount. This technique can be used to enhance drainage from a water storage facility during a period of extreme drought and the seawater desalination plants using reverse osmosis in drought stricken coastal regions.

Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines

  • Yang, Gongde;Fu, Xinghe;Lin, Mingyao;Li, Nian;Li, Hao
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.158-167
    • /
    • 2019
  • This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.

Hybrid Sinusoidal-Pulse Charging Method for the Li-Ion Batteries in Electric Vehicle Applications Based on AC Impedance Analysis

  • Hu, Sideng;Liang, Zipeng;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.268-276
    • /
    • 2016
  • A hybrid sinusoidal-pulse current (HSPC) charging method for the Li-ion batteries in electric vehicle applications is proposed in this paper. The HSPC charging method is based on the Li-ion battery ac-impedance spectrum analysis, while taking into account the high power requirement and system integration. The proposed HSPC method overcomes the power limitation in the sinusoidal ripple current (SRC) charging method. The charger shares the power devices in the motor inverter for hardware cost saving. Phase shifting in multiple pulse currents is employed to generate a high frequency multilevel charging current. Simulation and experimental results show that the proposed HSPC method improves the charger efficiency related to the hardware and the battery energy transfer efficiency.

Numerical Analysis of Intense Electric Current Pulse to Disperse Shaped Charge Metal Jet (성형작약탄 금속제트 산란을 위한 대전류 펄스의 수치해석적 연구)

  • Park, Hyeong Gyu;Kim, Dong Kyu;Kim, Si Woo;Joo, Jae Hyun;Song, Woo Jin;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • The electromagnetic force induced by an intense electric current pulse, which generates an electromagnetic field around the metal jet originating from a shaped charge, can disperse and scatter the high-speed metal jet. An electric device consisting of an RLC circuit applies an intense electric current pulse that flows in the circuit while the metal jet passes between two electrodes. In this study, the metal jet formation was simulated using the ALE technique in 2-D, and a 3-D finite element model was mapped using 2-D simulation results to induce the electric current directly. The deformed shapes of the metal jet and the electromagnetic force were calculated using a finite element analysis by inducing the electric current directly, and the major parameters of the intense electric current pulse for breaking up the metal jet were examined.

Implement High Speed Bidirectional pulse power supply(BPPS) for plating

  • Kim, Tae-Eon;Park, Jong-Oh;Cho, Yong-Seong;Lee, Ihn-Yong;Kim, Young-Han;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.1-37
    • /
    • 2001
  • Electric plating is used in various industry field. Specially, pulse plating is able to deposit material at high current density compared to conventional DC plating. For example, pulse plating can get more fine grain, can improve adhesion and metal distribution and current efficiency, can reduce internal stress and crack. Therefore, we developed bidirection pulse power supply(BPPS) which has high speed pulse current and high current density and improve deposition quality and increase plating speed in this paper. BPPS(Bidirection pulse power supply) needs high speed rising time, falling time and output current accuracy. BPPS consists of rectifier part, chopper part, invertor part, and control part. Rectifier part changes outprt current direction.

  • PDF

Influence on EDM Surface with the Copper and Graphite Electrode According to the Discharge Energy (방전에너지에 따라 동전극과 흑연전극이 방전가공면에 미치는 영향)

  • Choi, Jae-Yong;Jeon, Eon-Chan;Jeong, Jae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.53-59
    • /
    • 1997
  • This study has been performed to inmvestigate MRR(metal removal rate), REW(relative electrode wear), surface roughness, heat transumutation layer and microhardness distribution in cross-section of the machined surface with various pulse-on duration and peak pulse current, using the copper and graphite electrode on the heat treated STD11 which is extensively used for metallic molding steel with the EDM. The results obtained are as follows; a) There exists critical pulse-on duration(If Ip equals 5A, .tau. on is 50 .mu. s) which shows the the maximum MRR in accordance with peak oulse current and the MRR decreases when the pulse-on duration exceeds the critical pulse-on during because of the abnormal electric discharge. b) Safe discharge is needed to make maximum of MRR and the metalic organization must be complicated for discharge induction. c) Graphite has much more benefits than copper electrode when rapid machining is done without electrode wear. d) The most external surface has the highest microhardness because of car- burizing from heat analysis of the dielectric fluid and the lower layar of the white covered layer has lower microhar dness than base matal because of softening.

  • PDF

Pulse Density Modulation Controlled Series Load Resonant Zero Current Soft Switching High Frequency Inverter for Induction-Heated Fixing Roller

  • Sugimura, Hisayuki;Kang, Ju-Sung;Saha, Bishwajit;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.226-228
    • /
    • 2006
  • This paper presents the two lossless auxiliary inducors-assisted voltage source type half bridge(single ended push pull:SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation forwide its output power regulation ranges and load variations under constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operatprinciple is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation charactertics-based on the high frequency PDM strategy. The experimenoperating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimenones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliimplemented here is proved from the practical point of view.

  • PDF