• Title/Summary/Keyword: electric current density

Search Result 656, Processing Time 0.029 seconds

Fabrications and Analysis of Schottky Diode of Silicon Carbide Substrate with novel Junction Electric Field Limited Ring (새로운 전계 제한테 구조를 갖는 탄화규소 기판의 쇼트키 다이오드의 제작과 특성 분석)

  • Cheong Hui-Jong;Han Dae-Hyun;Lee Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1281-1286
    • /
    • 2006
  • We have used the silicon-carbide(4H-SiC) instead of conventional silicon materials to develope of the planar junction barrier schottky rectifier for ultra high breakdown voltage(1,200 V grade). The substrate size is 2 inch wafer, Its concentration is $3*10^{18}/cm^{3}$ of $n^{+}-$type, thickness of epitaxial layer $12{\mu}m$ conentration is $5*10^{15}cm^{-3}$ of n-type. The fabticated devices are junction barrier schottky rectifier, The guard ring for improvement of breakdown voltage is designed by the box-like impurity of boron, the width and space of guard ring was designed by variation. The contact metals to rectify were used by the $Ni(3,000\:{\AA})/Au(2,000\:{\AA})$. As a results, the on-state voltage is 1.26 V, on-state resistance is $45m{\Omega}/cm^{3}$, maximum value of improved reverse breakdown voltage is 1180V, reverse leakage current density is $2.26*10^{-5}A/CM^{3}$. We had improved the measureme nt results of the electrical parameters.

Wavelength Conversion Lanthanide(III)-cored Complex for Highly Efficient Dye-sensitized Solar Cells

  • Oh, Jung-Hwan;Song, Hae-Min;Eom, Yu-Kyung;Ryu, Jung-Ho;Ju, Myung-Jong;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2743-2750
    • /
    • 2011
  • Lanthanide(III)-cored complex as a wavelength conversion material has been successfully designed and synthesized for highly efficient dye-sensitized solar cells, for the first time, since light with a short wavelength has not been effectively used for generating electric power owing to the limited absorption of these DSSCs in the UV region. A black dye (BD) was chosen and used as a sensitizer, because BD has a relatively weak light absorption at shorter wavelengths. The overall conversion efficiency of the BD/WCM device was remarkably increased, even with the relatively small amount of WCM added to the device. The enhancement in $V_{oc}$ by WCM, like DCA, could be correlated with the suppression of electron recombination between the injected electrons and $I_3{^-}$ ions. Furthermore, the short-circuit current density was significantly increased by WCM with a strong UV light-harvesting effect. The energy transfer from the Eu(III)-cored complex to the $TiO_2$ film occurred via the dye, so the number of electrons injected into the $TiO_2$ surface increased, i.e., the short-circuit current density was increased. As a result, BD/WCM-sensitized solar cells exhibit superior device performance with the enhanced conversion efficiency by a factor of 1.22 under AM 1.5 sunlight: The photovoltaic performance of the BD/WCM-based DSSC exhibited remarkably high values, $J_{sc}$ of 17.72 mA/$cm^2$, $V_{oc}$ of 720 mV, and a conversion efficiency of 9.28% at 100 mW $cm^{-2}$, compared to a standard DSSC with $J_{sc}$ of 15.53 mA/$cm^2$, $V_{oc}$ of 689 mV, and a conversion efficiency of 7.58% at 100 mW $cm^{-2}$. Therefore, the Eu(III)-cored complex is a promising candidate as a new wavelength conversion coadsorbent for highly efficient dye-sensitized solar cells to improve UV light harvesting through energy transfer processes. The abstract should be a single paragraph which summaries the content of the article.

Improvement of Electron Emission Characteristics and Emission Stability from Metal-coated Carbon Nanotubes (금속 코팅된 탄소나노튜브의 전계 방출 특성 및 신뢰성 향상)

  • Uh, H.S.;Park, S.;Kim, B.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.436-441
    • /
    • 2011
  • Metal coating with several nanometer thickness was applied on the carbon nanotubes (CNTs) in order to improve electron emission characteristics and emission reliability for the potential applications in the area of various electron sources and displays. CNTs were grown on the 2-nm thick Invar (52% Fe, 42% Ni, 6% Co alloy)-catalized Si substrate by using plasma-enhanced chemical vapor deposition at $450^{\circ}C$. In order to reduce the spatial density of densely packed CNTs, as-grown CNTs were partly etched back by $N_2$ plasma and subsequently coated with 5~150 nm thick Ti by a sputtering method. 5 nm thick Ti-coated CNTs produced four times higher emission current density at the electric field of 6 V/${\mu}m$ and much lower emission current fluctuation, compared with the as-grown CNTs. These improved emission properties are mainly due to not only the work function of Ti (4.3 eV) lower than that of pristine CNTs (5 eV), but also lower contact resistance and better adhesion between CNT emitters and substrate accomplished by Ti coating.

THE ELECTROMAGNETIC CHARACTERISTICS OF THE POLAR IONOSPHERE DURING A MODERATELY DISTURBED PERIOD (지자기교란시 극전리층의 전자기적인 특성)

  • 안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.216-233
    • /
    • 1995
  • The distributions of the ionospheric conductivities, electric potential, ionospheric currents, field-aligned currents, Joule heating rate, and particle energy input rate by auroral electrons along with the characteristics of auroral particle spectrum are examined during moderately disturbed period by using the computer code developed by Kamide et al. (1981) and the ionospheric conductivity model developed by Ahn et al. (1995). Since the ground magnetic disturbance data are obtained from a single meridian chain of magnetometers (Alaska meridian chain) for an extended period of time (March 9 - April 27, 1978), they are expected to present the average picture of the electrodynamics over the entire polar ionosphere. A number of global features noted in this study are as follows: (1) The electric potential distribution is characterized by the so-called two cell convection pattern with the positive potential cell in the morning sector extending into the evening sector. (2) The auroral electrojet system is well developed during this time period with the signatures of DP-1 and DP-2 current systems being clearly discernable. It is also noted that the electric field seems to play a more important role than the ionospheric conductivity the conductivity over the poleward half of the westward electrojet in the morning sector while the conductivity enhancement seems to be more important over its equatorward half. (3) The global field-aligned current distribution pattern is quite comparable with the statistical result obtained by Iijima and Potemra (1976). However, the current density of Region 1 is much higher than that of Region 2 current at pointed out by pervious studies (e.g.; Kamide 1988). (4) The Joule heating occurs over a couple of island-like areas, one along the poleward side of the westward electrojet region in the afternoon sector. (5) The maximum average energy of precipitating electrons is found to be in the morning sector (07∼08 MLT) while the maximum energy flux is registered in the postmidnight sector (02 MLT). Thus auroral brightening and enhancement of ionospheric conductivity during disturbed period seem to be more closely associated with enhancement of particle flux rather than hardening of particle energy.

  • PDF

A Study on the Electric and Ferroelectric Properties of PZT(30/70) Thick Film Prepared by Using 1,3-Propanediol (1, 3-Propanediol 을 이용해 제작된 PZT(30/70) 후막의 전기적 및 강유전 특성에 관한 연구)

  • 송금석;장동훈;강성준;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.631-637
    • /
    • 2003
  • We have evaluated structural and electric, ferroelectric properties of PZT(30/70) thick film prepared by using 1,3-propanediol based sol-gel method on Pt/Ti/SiO$_2$/Si substrates. Rapid thermal annealing (RTA) is used to reduce the thermal stress and final furnace annealing is processed at $650^{\circ}C$. As the results of SEM analysis, we find that we get 350 nm in thickness for one coating and 1 $\mu$m for three times of coating. In the results of C-D analysis at 1 kHz, dielectric constant ($\varepsilon$$_{r}$) and dissipation factor were 886 and 0.03, respectively. C-V curve is shaped as a symmetrical butterfly. Leakage current density at 200 kV/cm is 1.23${\times}$10$^{-5}$ A/cm$^2$ and in the results of hysteresis loops measured at 150 kV/cm, the remnant polarization (P$_{r}$) and the coercive field (E$_{c}$) are 33.8 $\mu$C/cm$^2$ and 56.9 kV/cm, respectively. PZT(30/70) thick film exhibits relatively good ferroelectric, electric properties.s..

A Study on Electrical Properties of $Ta_2O_{5-x}$ Thin-films Obtained by $O_2$ RTA ($O_2$RTA 방법으로 제조된 $Ta_2O_{5-x}$ 박막의 전기적 특성)

  • Kim, In-Seong;Song, Jae-Seong;Yun, Mun-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.340-346
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and integration of passive devices requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. common capacitor materials, $Al_2O_3$, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$, TaN and et al., used until recently have reached their physical limits in their application to integration of passive devices. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism. This study presents the dielectric properties $Ta_2O_{5}$ MIM capacitor structure Processed by $O_2$ RTA oxidation. X-ray diffraction patterns showed the existence of amorphous phase in $600^{\circ}C$ annealing under the $O_2$ RTA and the formation of preferentially oriented-$Ta_2O_{5}$ in 650, $700^{\circ}C$ annealing and the AES depth profile showed $O_2$ RTA oxidation effect gives rise to the $O_2$ deficientd into the new layer. The leakage current density respectively, at 3~1l$\times$$10_{-2}$(kV/cm) were $10_{-3}$~$10_{-6}$(A/$\textrm{cm}^2$). In addition, behavior is stable irrespective of applied electric field. the frequency vs capacitance characteristic enhanced stability more then $Ta_2O_{5}$ thin films obtained by $O_2$ reactive sputtering. The capacitance vs voltage measurement that, Vfb(flat-band voltage) was increase dependance on the $O_2$ RTA oxidation temperature.

Preparation of Anion Exchange Membranes of Cross-linked Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/Poly(vinyl alcohol) (가교결합한 Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) 음이온 교환막 제조)

  • Kim, Mi-Yang;Kim, Kwang-Je;Kang, Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.621-626
    • /
    • 2010
  • Anion exchange membranes can be used for reverse electrodialysis for electric energy generation, and capacitive deionization for water purification, as well as electrodialysis for desalination. In this study, anion exchange membranes of poly((vinylbenzyl) trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) were prepared through the polymerization of (vinylbenzyl)trimethylammonium chloride and 2-hydroxyethyl methacrylate in aqueous poly(vinyl alcohol) solutions, esterification with glutaric acid, and cross-linking reaction with glutaraldehyde. We investigated electrochemical properties for the anion exchange membranes prepared according to experimental conditions. Ion exchange capacity and electrical resistance for the membranes were changed with a variation in the monomer ratio in polymerization. Water uptake and conductivity for the membranes decreased with an increase in the content of glutaric acid in esterification. The change in the time of crosslinking reaction with the formed film and glutaraldehyde affected electrochemical properties such as water uptake, conductivity, or transport number for the membranes. Chronopotentiometry and limiting current density for the anion exchange membranes prepared were measured.

The Design of a Hybrid Engine System Based on a Reciprocal Engine For Unmanned Aerial Vehicles (내연기관 기반 드론용 하이브리드 엔진 시스템 설계)

  • Gang, Byeong Gyu;Kim, Keun-Bae
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.42-48
    • /
    • 2020
  • This research illustrates how the hybrid engine system comprising of a two-cycle reciprocal engine with an integrated generator and a battery is prepared for the design process. The purpose of this research is to increase flight endurance taking advantage of the high energy density of hybrid propulsion systems as well as to cope with current environmental issues by reducing fossil fuel. The hybrid system is designed to offer 6 kW power, and the power can be adjusted by controlling the engine's RPM in accordance with load variations. In addition, the battery is adopted to offer extra electric power that this hybrid system cannot cover, and can function as the main power source in limited time in the case of an emergency situation. Besides that, the generator is directly mounted on an engine crank-shaft, and in turn, they can share the same RPM. Thus, it is hypothesized that this integration method can make a compact design possible by reducing space for the installation in the fuselage of UAVs.

Effects of Neonatal Footshock Stress on Glucocorticoid and $5-HT_{2A/2C}$ Receptor Bindings and Exploratory Behavior

  • Kim, Dong-Goo;Lee, Seoul;Kang, Dong-Won;Lim, Jong-Su
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.677-685
    • /
    • 1998
  • To investigate the effects of neonatal stress on behavior and neurochemistry, rats were exposed to the footshock stress on postnatal day (PND) 14 or PNDs 14 and 21. Rats were exposed to uncontrollable electric shocks delivered to the floor with a constant current (0.8 mA) for 5 sec period. Daily sessions consisted of 60 trials on a random time schedule with an average of 55 sec. The first exposure to footshocks on PND 14 decreased body weight gain for 1 day. However, the second exposure to footshocks on PND 21 did not affect body weight gain. Exploratory activity was measured by exposing a rat to a novel environment 24 h after experience of footshocks. Similar to the body weight changes, a decreased activity was noted after the first exposure to footshocks, while no changed activity was noted after the second exposure to footshocks. However, the Bmax value of $5-HT_{2A/2C}$ receptors in the cortex decreased by the second exposure to footshocks, but not by the first exposure to footshocks. Moreover, an autoradiographic study revealed that the density of $[^3H]dexamethasone$ binding in hippocampus decreased in rats exposed to footshocks 4 times during PND $14{\sim}20.$ These results suggest that the uncontrollable footshock stress changes 5-hydroxytryptamine and glucocorticoid receptor systems acutely and that the repeated exposure to the same stress may not elicit behavioral alterations by the compensatory activity of young brain although changes in some neurochemistry exist.

  • PDF

The Role of Excipients in Iontophoretic Drug Delivery: In vitro Iontophoresis of Isopropamide and Pyridostigmine through Rat Skin and Effect of Ion-pair Formation with Organic Anions

  • Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 1993
  • The iontophoretic delivery across rat skin of quaternary ammonium salts (isopropamide: ISP, pyridostigmine: PS), which are positively charged over a wide pH range, was measured ill vitro. The study showed that: (a) iontophoresis significantly enhanced delivery of ISP and PS compared to respective passive transport; (b) delivery of ISP and PS was directly proportional to the applied continuous direct current density over the range of $0-0.69\;mA/cm^2;$ (c) delivery of ISP and PS was also proportional to the drug concentration in the donor compartment over the range of $0-2{\time}l0^{-2}M:$ (d) sodium ion in the donor compartment inhibited the drug transport possibly due to decreasing the electric transference number of the drug; (e) delivery of ISP and PS increased as the pH of the donor solution increased over the pH range 2-7 suggesting permselective nature of the epidermis, and inhibition of the transference number of the drugs by hydronium ion; (f) some organic anions such as taurodeoxycholate, salicylate and benzoate which form lipophilic ion-pair complexes with ISP inhibited the delivery of ISP. The degree of inhibition by the organic anions was linearly proportional to the extraction coefficient $(K_e)$ of ISP from the partition system with each counteranion between phosphate buffer (pH 7.4) and n-octanol. For PS, however, taurodeoxycholate, but not salicylate and benzoate inhibited the iontophoretic delivery. It suggests that not only sodium ion and hydronium ion but also the counteranions which form lipophilic ion-pairs with quaternary ammonium drugs are not favorable components in formulating the donor solution of the drugs to achieve an effective iontophoretic delivery.

  • PDF