• Title/Summary/Keyword: electric arc furnace oxidizing slag aggregate

Search Result 29, Processing Time 0.025 seconds

Appraisal of Concrete Performance and Plan for Stable Use of EAF Oxidizing Slag as Fine Aggregate of Concrete (전기로 산화슬래그 잔골재를 사용한 콘크리트의 성능 평가)

  • Cho, Bong-Suk;Lee, Hoon-Ha;Yang, Seung-Kyu;Lee, Woong-Jong;Um, Tai-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.367-375
    • /
    • 2009
  • Recently, more focus is shift to imbalances in aggregate market supply and demand and an exhaustion of natural resources. In this situation, Electric arc furnace oxidizing slag (EAF slag) has high application possibility as aggregate for concrete due to similar property with general aggregate. However, it is inherent the problem which causes pop-out by free-CaO contained in slag In this study, we've got the plan to assure the chemical stability of EAF slag, and then experimentally tested the mechanical performance and durability for the fine aggregate used EAF slag. On this test result, we suggest the application plan. At the result of this study, it shows that EAF slag would reduce the surface defect such as pop-out due to natural aging for the fixed hour and adjustment the grain size of EAF slag. And mechanical performance and durability according to the replacement rate of concrete service, were revealed more than equal or equal compare to general aggregate. Hereafter, quality control must precede not to impede the beauty of concrete surface as assure the safety for aging and processing. And, to establish the environmental resource recycling system for by-products of steel, it should be made development of various application and guideline of quality control for the EAF slag aggregate. Moreover, it must be constantly studied all kind of engineering performance and durability for related to this study.

Influence of Various Replacement Ratio of Electric Arc Furnace Fine Aggregate on Fundamental Properties of Limestone Based High Strength Mortar (전기로 산화 슬래그 잔골재 치환율 변화가 석회암 기반 초고강도 모르타르의 기초적 특성에 미치는 영향)

  • Moon, Byeong-Yong;Song, Yuan-Ru;Lee, Jea-Hyeon;Kim, Min-sang;Han, In-Deok;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.45-46
    • /
    • 2016
  • As the demand for super tall buildings is currently increased in domestic and foreign countries, some kinds of ultra-high strength concretes are being developed actively. Since the cross section of concrete becomes smaller thanks to such kinds of ultra-high strength concretes, the concrete structures can be much bigger, more gigantic and much ultra-high. And as another benefit which is generated thanks to the enhancement of the durability performance, the maintenance expenses are also saved. However, since low W/B ultra-high concrete has a high possibility that many cracks can occur in the initial period due to the self-shrinkage caused by the self-desiccation as one of the blending characteristics, the problem becomes bigger by influencing the safety of a structure. Therefore, in this study, it is intended to analyze the effects of substituting some limestone-based ultra-high strength mortar with electric arc furnace oxidizing slag fine aggregates on the self-shrinkage of mortar.

  • PDF

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.

An Experimental Study on Rapid Repairing Mortar for Road with Steel Slag (철강 슬래그를 사용한 도로용 긴급보수 모르타르에 관한 실험적 연구)

  • Jung, Ui-In;Kim, Bong-Joo;im, Jin-Man;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • The purpose of this study is to recycle steel slag generated from the iron producing process and to use steel slag as a construction material which is currently landfilled Steel slag is subjected to aging treatment due to the problem of expansion and collapse when it reacts with water. The Slag Atomizing Technology (SAT) method developed to solve these problems of expanding collapse of steel slag. In this study, experimental study on the emergency repair mortar using the reducing slag, electric arc furnace slag and silicon manganese slag manufactured by the SAT method is Reduced slag was shown an accelerated hydration when it was replaced with rapidly-setting cement, and the rate of substitution was equivalent to 15%. It is shown that the electric furnace oxide slag is equivalent to 100% of the natural aggregate, and it can be replaced by 15-30% when the silicon manganic slag is substituted for the electric furnace oxide slag. With the above formulation, it was possible to design the rapidly repair mortar for road use. These recycling slags can contribute on achieving sustainability of construction industry by reducing the use of cement and natural aggregates and by reducing the generation of carbon dioxide and recycling waste slag.

Analysis of Fundamental Properties of Concrete Using Mix of Coarse Aggregate With Formation Causes (성인이 다른 굵은 골재를 혼합사용한 콘크리트의 기초적 특성 분석)

  • Noh, Sang-Kyun;Kim, Young-Hee;Kim, Jeong-Bin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Recently, attempts of replacing some of natural aggregate with mix of low quality aggregate are carried out for stable supply of aggregate. However, low quality aggregate such as recycled aggregate produced during the disposal process of construction wastes and by-product aggregate produced by industrial activities has problem of failing to comply to KS Standards. Therefore, we have compared fundamental properties of concrete by using granite crushed aggregate, recycled aggregate, blast furnace and electric arc furnace slag aggregate for effective utilization of lacking aggregate resources. As the result, slump in case of mixed use of aggregate was increased 0~10% compared to single use. Therefore, it is judged to be economically advantageous as it can expect effects in unit quantity or reduction of SP agent. Compressive strength in case of mixed use of aggregate was increased 0~10% compared to single use as it filled internal crevice of concrete with continuous particle size distribution. Accordingly, if we utilize by satisfying standard particle scope through mix of aggregate with different cause of formation in proper ratio, it was possible to confirm utility of mixed aggregate with demonstration of effects of increases of fluidity and compressive strength of concrete.

Experimental Study on Evaluation on Volume Stability of the Electric Arc Furnace Oxidizing Slag Aggregate (전기로 산화슬래그 골재의 체적안정성 평가에 관한 실험적 연구)

  • Lim, Hee Seob;Lee, Han Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.78-86
    • /
    • 2017
  • As the amount of slag generated annually increases, attempts to recycle slag as high value products are underway in order to develop an efficient resource recycling industry based on slag and derive economic benefits as well. However, the application of electric arc furnace (EOS) slag as construction material is practically limited because of the unstable substances included in it, such as free CaO.(EOS contains a small amount of free CaO, but several limitations still exist. Slag is stored for more than 3 months depending on the quantity of slag, which leads to additional economic loss. In this study, the amount of free CaO present in EOS is quantitatively evaluated to examine its qualities as a potential construction material and verify its application as concrete material. The quantitative analysis of free CaO present in EOS is performed using ethylene glycol. The free CaO contents of EOS samples were found to be below 0.5%. This satisfies the criteria specified in KS F 4571, which states that the CaO content should be below 40% and $CaO/SiO_2$ ratio should be below 2.0. In addition, it was confirmed that free CaO content difference appears to be dependent on the aging period and storage position.

Effect of the Combination of Coarse Aggregate and Fine Aggregate on the Flowability of Ultra High Strength Concrete (굵은 골재 및 잔골재 변화가 초고강도 콘크리트의 유동특성에 미치는 영향)

  • Lee, Hong-Kyu;Lee, Sun-Jae;Kim, Sang-Sup;Park, Young-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.71-72
    • /
    • 2015
  • As this study is the one related to the ultra high strength concrete essentially used for high rise buildings, it has analyzed on the flowability of ultra high strength concrete according to the variation of coarse aggregate and fine aggregate. The coarse aggregate was planned as two types including Granite Aggregate (GA) and crushed coarse Limestone Aggregate (LA) while fine aggregate was planned as four types including Sea Sand (SS), Limestone Crushed Fine Aggregates (LFA), Electric Arc Furnace Oxidizing Slag Aggregates (EFA) and Crushed Sand (CS) to perform experiment with a total of eight variables. As a result of analyzing slump flow, 500mm concentration time, U-Box and L-Flow, etc. among the characteristics of fresh concrete, a mix using LA+LFA is determined to show high flowability in case of applying ultra high strength concrete.

  • PDF

A Study on Performance Evaluation of Early-age Concrete with EOS Fine Aggregate and GGBFS (EOS 잔골재 및 GGBFS를 혼입한 초기재령 콘크리트의 성능 평가에 관한 연구)

  • Kwon, Seung Jun;Cho, Sung Jun;Lim, Hee Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.113-119
    • /
    • 2019
  • Many researches on alternative materials as construction materials is continuing by recycling industrial byproducts due to shortage of sitereclamation and natural aggregates. In this paper, engineering properties in early-aged OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete are evaluated with EOS aggregate replacement. The related experiments were carried out with 0.6 of water to binder ratio, three levels of EOS replacement ratios (0%, 30% and 50%) for fine aggregate, and two levels of cement replacement with GGBFS (0% and 40%). Several tests such as slump air content, and unit mass measurement are performed for fresh concrete, and compressive strength and diffusion coefficient referred to NT BUILD 492 method are measured for hardened concrete. Through the tests, it was evaluated that the compressive strength in concrete with EOS aggregate increased to 3 days and 7 days but slightly decreased at the age of 28 days. In the accelerated chloride penetration test, GGBFS concrete showed reduced diffusion coefficients by 60 - 67% compared with OPC concrete. The lowest chloride diffusion coefficient was evaluated in the 50% replacement with EOS aggregate, which showed an applicability of EOS aggregate to concrete production.