• Title/Summary/Keyword: elastic punch

Search Result 64, Processing Time 0.021 seconds

Evaluations of Swaging Process for Rotor Core of Induction Motors II (유도전동기 회전자 제작시 압입작업 평가 II)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.464-469
    • /
    • 2017
  • This study evaluated the displacements of a Cu bar in the Y-direction and the relationship between swaging pressures and total contact forces to increase the productivity of the rotor core swaging process. Elastic-plastic numerical analyses of four different Cu bar shapes were performed with a constant swaging pressure to evaluate the displacements of the Cu bar in the Y-direction and the contact force distributions at the contact surfaces during the swaging process. Based on the numerical analysis results, the following conclusions were obtained. First, a simplified 2-dimensional cyclic symmetric analysis model was developed for the numerical analysis of the rotor core swaging process. Second, the final displacements of the Cu bar in the Y-direction were nearly the same as the change of the Cu bar size at a constant swaging pressure. Third, a linear relationship between the swaging pressures and the total contact forces, the so called resistance forces, was suggested.

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

Design of drawing process of 9Ni-4Co-0.3C steel to make a large pressure vessel (대형 압력용기 제작을 위한 9Ni-4Co-0.3C 강의 드로잉공정 설계에 관한 연구)

  • Hong Jin Tae;Lee Seok-Ryul;Kim Kyung Jin;Yang Dong Yol;Lee Kyung Hun;Choi Moon Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.93-99
    • /
    • 2005
  • In this work, computer-aided process design is carried out to develop an optimal preform of a pressure vessel. Knowledge-based rules are employed to design the preform, and they are formulated using the handbooks of plasticity theories. In the FE-analysis, a commercial finite element code, ABAQUS was employed. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed fur various combinations of die design parameters. The length of the land of die, the clearance between punch and die and the clearance between the blank holder and die are optimized to minimize the forming load. The results of the simulations are verified with the experiments which are scaled down to one tenth of the actual size.

Study on Application of Flexible Die to Sheet Metal Forming Process (가변금형의 박판 성형공정 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

Fabrication of Ultra Small Size Hole Array on Thin Metal Foil (초미세 금속 박판 홀 어레이 가공)

  • Rhim S. H.;Son Y. K.;Oh S. I.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.9-14
    • /
    • 2006
  • In the present research, the simultaneous punching of ultra small size hole of $2\~10\;{\mu}m$ in diameter on flat rolled thin metal foils was conducted with elastic polymer punch. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of 1.5fm in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The process set-up is similar to that of the flexible rubber pad farming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions. The effects of the wafer die hole dimension and heat treatment of the workpiece on ultra small size hole formation of the thin foil were discussed. The process condition such as proper die shape, pressure, pressure rate and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole away in a one step operation.

FE TECHNIQUES TO IMPROVE PREDICTION ACCURACY OF DIMENSION FOR COLD FORGED PART

  • Lee Y.S.;Lee J.H.;Kwon Y.N.;Ishikawa T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.26-30
    • /
    • 2003
  • Since the dimension of cold forged part is larger than the cavity size of forging die, the difference results from the various features, such as, the elastic characteristics of die and workpiece, thermal influences, and machine-elasticity. All of these factors should be considered to get more accurate prediction of the dimension of forged part. In this paper, severe FE techniques are proposed to improve the prediction accuracy of dimension for cold forged part. To validate the importance of the above mentioned factors, and the estimated results are compared with the experimental results. The used model is a closed die upsetting of cylindrical billet. The calculated dimensions are well coincided with .the measured values based on the proposed techniques. The proposed techniques have put two simple but important points into Fe simulation. One is the separation of forging stages into 3 steps, from a loading through punch retraction to ejecting stage. The other is the dimensional change, according to the temperature changes due to the deformation. The FE analysis could predict the dimension of cold forged part within the $10{\mu}m$, based on the more realistic consideration.

  • PDF

Experimental and Numerical Analyses of Flexible Forming Process for Micro Channel Arrays of Fuel Cell Bipolar Plates (연료전지 분리판의 마이크로 채널 제작을 위한 가변성형공정의 실험적 및 수치적 연구)

  • Kim, H.S.;Shim, J.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.499-505
    • /
    • 2012
  • The fuel cell is a very promising power generation system combining the benefits of extremely low emissions, high efficiency, ease of maintenance and durability. In order to promote the commercialization of fuel cells, a flexible forming process, in which a hyper-elastic rubber is adopted as a medium to transmit forming pressure, is suggested as an efficient and cost effective manufacturing method for fuel cell bipolar plates. In this study, the ability of this flexible forming process to produce the micro channel arrays on metallic bipolar plates was first demonstrated experimentally. Then, a finite element (FE) model was built and validated through comparisons between simulated and experimental results. The effects of key process parameters on the forming performance such as applied load and punch velocity were investigated. As a result, appropriate process parameter values allowing high dimensional accuracy without failure were suggested.

Numerical and Experimental Study on Plate Forming Process using Flexible Die (가변금형을 이용한 판재 성형에 대한 해석 및 실험)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.570-578
    • /
    • 2008
  • A flexible forming apparatus is composed a number of punches which have spherical pin tip shape instead of conventional solid die. The flexible forming tool consisted of punch array in a matrix form was proposed as an alternative forming method to substitute the conventional line heating method which use heat source to induce residual stress along specified heating lines. In this study, application of the flexible forming process to the small scale curved plate forming was conducted. Numerical simulations for both solid and flexible die forming process were carried out to compare the shape of the products between flexible and conventional die forming process. In addition, spring-back analysis was conducted to figure out the feasibility of the flexible forming process comparing with the die forming process in view of final configuration of the specimens. Moreover, experiment was also carried out to confirm the formability of the process. Consequently, it was confirmed that the flexible die forming method has capability and feasibility to manufacture the curved plates for shipbuilding.

Empirical Relationship Between SP-curves and Tensile Properties in Mn-Mo-Ni Low Alloy Steels (Mn-Mo-Ni 저합금강의 SP-곡선과 인장물성과의 실험적 관계)

  • Lee, Jae-Bong;Kim, Min-Chul;Park, Jai-Hak;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.554-562
    • /
    • 2004
  • An empirical relationship between parameters from SP curves and tensile properties has been systematically investigated by experimental tests and FEM simulations. A series of SP and tensile tests were performed. SP tests were also simulated by FE analysis with various tensile properties. It was found that the yield loads(Py) and the maximum loads( $P_{MAX}$) in SP curves were linearly related with the yield strength($\sigma$$_{o}$) and the tensile strength($\sigma$$_{UTS}$), respectively. The yield loads defined from the intersection point of two lines tangent to the elastic bending region and plastic bending region showed better relation to the yield strength than those from offset line. The maximum loads in SP curves showing plastic instability region was linearly related with the tensile strengths. The slope of SP curves in simulation results had a close correlation with the hardening coefficient and hardening strength as well.l.l.l.

Effect of progressive shear punch of a foundation on a reinforced concrete building behavior

  • Naghipour, Morteza;Niak, Kia Moghaddas;Shariati, Mahdi;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.279-294
    • /
    • 2020
  • Foundation of a building is damaged under service loads during construction. First visit shows that the foundation has been punched at the 6 column's foot region led to building rotation. Foundation shear punching occurring has made some stresses and deflections in construction. In this study, progressing of damage caused by foundation shear punching and inverse loading in order to resolve the building rotation has been evaluated in the foundation and frame of building by finite element modeling in ABAQUS software. The stress values of bars in punched regions of foundation has been deeply exceeded from steel yielding strength and experienced large displacement based on software's results. On the other hand, the values of created stresses in the frame are not too big to make serious damage. In the beams and columns of ground floor, some partial cracks has been occurred and in other floors, the values of stresses are in the elastic zone of materials. Finally, by inverse loading to the frame, the horizontal displacement of floors has been resolved and the values of stresses in frame has been significantly reduced.