• Title/Summary/Keyword: elastic modulus ratio

Search Result 478, Processing Time 0.025 seconds

Calculation of Compressive Strength in Concrete Using Finely Ground Granulated Furnace Blast Slag (고로슬래그미분말을 혼입한 콘트리트의 압축강도 정산)

  • Shin, Sung-Woo;Lee, Han-Seung;Choi, Myung-Shin;Kim, Jung-Sik;Lee, Jae-Sam;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.30-35
    • /
    • 1998
  • This study was carried out to investigate quantitatively the relationship between the water binder ratio and the concrete strength using finely ground granulated furnace blast slag. In the experiment, the compressive strength and elastic modulus of concrete which slag contents are 0%, 10%, 20% and 30% at 7days and 28days age. As a result, the compressive strength have a high correlation with slag contents and water binder ratio. Thus, it is possible to calculate the water binder ratio using compressive strength of concrete contented with slag.

  • PDF

Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars

  • Kim, Min Sook;Lee, Young Hak;Kim, Heecheul;Scanlon, Andrew;Lee, Junbok
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.459-477
    • /
    • 2011
  • Due to the low elastic modulus of FRP, concrete members reinforced with FRP rebars show greater deflections than members reinforced with steel rebars. Deflection is one of the important factors to consider the serviceability of horizontal members. In this study flexural test of AFRP reinforced concrete beams was performed considering reinforcement ratio and compressive strength as parameters. The test results indicated that flexural capacity and stiffness increase in proportion to the reinforcement ratio. The test results were compared with existing proposed equations for the effective moment of inertia including ACI 440. The most of the proposed equations were found to over-estimate the effective moment of inertia while the equation proposed by Bischoff and Scanlon (2007) most accurately predicted the values obtained through actual testing.

Evaluation of Internally Cured Concrete Pavement Using Environmental Responses and Critical Stress Analysis

  • Kim, Kukjoo;Chun, Sanghyun
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.463-473
    • /
    • 2015
  • Three full-scale instrumented test slabs were constructed and tested using a heavy vehicle simulator (HVS) to evaluate the structural behavior of internally cured concrete (ICC) for use in pavements under Florida condition. Three mix designs selected from a previous laboratory testing program include the standard mixture with 0.40 water-cement ratio, the ICC with 0.32 water-cement ratio, and the ICC mixture with 0.40 water-cement ratio. Concrete samples were prepared and laboratory tests were performed to measure strength, elastic modulus, coefficient of thermal expansion and shrinkage properties. The environmental responses were measured using strain gages, thermocouples, and linear variable differential transformers instrumented in full-scale concrete slabs. A 3-D finite element model was developed and calibrated using strain data measured from the full-scale tests using the HVS. The results indicate that the ICC slabs were less susceptible to the change of environmental conditions and appear to have better potential performance based on the critical stress analysis.

Theoretical Study on the Strengthening Mechanism in Short Fiber Composites (단섬유 복합강화 메커니즘에 관한 이론적 연구)

  • 김홍건;최창용;노홍길
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.295-300
    • /
    • 2003
  • In discontinuous composite mechanics, shear lag theory is one of the most popular model because of its simplicity and accuracy. However, it does not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This is due to its neglect of stress transfer across the fiber ends and the stress concentrations that exist in the matrix regions near the fiber ends. To overcome this shortcoming, a more simplified shear lag model introducing the stress concentration factor which is a major function of modulus ratio is proposed. It is found that the proposed model gives a good agreement with finite element results and has the capability to correctly predict the values of intefacial shear stresses and local stress variations in the small fiber aspect ratio regime.

  • PDF

Deterioration of Polyethylene Films Induced by Partial Discharge and Variations Observed in Mechanical Properties (Polyethylene film의 부분방전열화와 역학적 특성)

  • ;Shigeru Yamamot
    • Journal of the Korean Society of Safety
    • /
    • v.4 no.1
    • /
    • pp.5-14
    • /
    • 1989
  • Deterioration induced by partial discharge was investigated for low-density polyethylene samples. Under an electrical field, a cold-drawn PE film was stretched perpendicularly to the direction of the original drawing. The starting voltage of the discharge shows a minimum at the draw ratio of 1.2 to 1.8. Around the same draw ratio, the elastic modulus and mechanical loss factor (tan S) of the sample exhibit a minimum and a maximum, respectively. According to the X-ray analysis, the size itf microcrystals decreases with increasing draw ratios. Reorientation of the ru01ecular chains was observed above a draw ratio of 1.5 by the IR method.

  • PDF

A Steel Spacing for Crack Control in RC Flexural Members with an Effective Modulus of Elastic (유효탄성계수를 반영한 철근콘크리트 휨부재의 균열제어를 위한 철근 간격)

  • Choi, Seung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.98-105
    • /
    • 2018
  • Cracks in RC members occurred as a result of material and structural factors. The crack width and a crack location are very difficult to examine. A direct crack control method and indirect crack control method to control a crack are presented in the KHBDC (LSD) and KSCDC (2012). In the KSCDC text, cracks are controlled by steel spacing indirectly under a service load. On the other hand, in the KSCDC appendix, cracks are controlled by a crack width directly under a sustained load. In particular, the loading state considered is different. On the other hand, cracks are controlled under a combination of service load and an effective elastic modulus is used in KHBDC. Therefore, in this study, an effective elastic modulus that can reflect the ratio of the sustained load and live load was applied, and a maximum steel spacing was calculated through a design crack width. A variable interpretation was carried out, and a rational crack control method was assessed. As a result, a steel spacing through the design crack width in the KSCDC was smaller than that from the design crack width in the KHBDC, which leads to a conservative design. In addition, the maximum steel spacing suggested in this study has a consistency eliminating the difference between direct crack control and indirect crack control.

Measurement of Flexural Modulus of Lamination Layers on Flexible Substrates (유연 기판 위 적층 필름의 굽힘 탄성계수 측정)

  • Lee, Tae-Ik;Kim, Cheolgyu;Kim, Min Sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.63-67
    • /
    • 2016
  • In this paper, we present an indirect method of elastic modulus measurement for various lamination layers formed on polymer-based compliant substrates. Although the elastic modulus of every component is crucial for mechanically reliable microelectronic devices, it is difficult to accurately measure the film properties because the lamination layers are hardly detached from the substrate. In order to resolve the problem, 3-point bending test is conducted with a film-substrate specimen and area transformation rule is applied to the cross-sectional area of the film region. With known substrate modulus, a modulus ratio between the film and the substrate is calculated using bending stiffness of the multilayered specimen obtained from the 3-point bending test. This method is verified using electroplated copper specimens with two types of film-substrate structure; double-sided film and single sided film. Also, common dielectric layers, prepreg (PPG) and dry film solder resist (DF SR), are measured with the double-sided specimen type. The results of copper (110.3 GPa), PPG (22.3 GPa), DF SR (5.0 GPa) were measured with high precision.

Anisotropic Elastic Shear Moduli of Sands Measured by Multi-directional Bender Element Tests in Stress Probe Experiments (사질토의 전단 하중 재하 시 다축 벤더엘리먼트 시험으로 구한 이방적 전단탄성계수)

  • Ko, Young Joo;Jung, Young Hoon;Lee, Choong Hyun;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.159-166
    • /
    • 2008
  • The stress-strain behavior of soils can usually be regarded as non-linear, while it is also known that the soil exhibits the linear-elastic behavior at pre-failure state (very small strain range, $<10^{-3}%$). This study aims to analyze the variation of anisotropic elastic shear moduli of granular soils in various stress conditions. The stress probe experiments with the triaxial testing device equipped with local strain gages and multi-directional bender elements were conducted. When the stress ratio exceeds the range between -0.5 and 1.5, the elastic shear stiffness in the axial direction deviates from the empirical correlation with current stresses, which indicates that the yielding of soils alters the internal pathway through which the elastic shear wave propagates. The experimental results show that the variation of elastic shear moduli in the horizontal direction closely relates to the volume change of soils.

Vibration Analysis of Special Orthotropic Plates on Elastic Foundation with Arbitrary Boundaries (자유경계를 갖고 탄성기초에 놓인 특별직교이방성 적층복합판의 진동해석)

  • 김덕현;이정호;홍창우;심도식
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.25-32
    • /
    • 1999
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special orthotropic plates on elastic foundation with free boundaries is presented. Such plates represent the concrete highway slab and hybrid composite pavement on bridges. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation and the aspect ratio of the plate on the natural frequency is thoroughly studied. The effect of neglecting the mass of the plates on the natural frequency, as the ratio of the point mass/masses to the plate mass increases, is also studied, in deep.

  • PDF

Analytical solution and experimental study of membrane penetration in triaxial test

  • Ji, Enyue;Zhu, Jungao;Chen, Shengshui;Jin, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1027-1044
    • /
    • 2017
  • Membrane penetration is the most important factor influencing the measurement of volume change for triaxial consolidated-drained shear test for coarse-grained soil. The effective pressure p, average particle size $d_{50}$, thickness $t_m$ and elastic modulus $E_m$ of membrane, contact area between membrane and soil $A_m$ as well as the initial void ratio e are the major factors influencing membrane penetration. According to the membrane deformation model given by Kramer and Sivaneswaran, an analytical solution of the membrane penetration considering the initial void ratio is deduced using the energy conservation law. The basic equations from theory of plates and shells and the elastic mechanics are employed during the derivation. To verify the presented solution, isotropic consolidation tests of a coarse-grained soil are performed by using the method of embedding different diameter of iron rods in the triaxial samples, and volume changes due to membrane penetration are obtained. The predictions from presented solution and previous analytical solutions are compared with the test results. It is found that the prediction from presented analytical solution agrees well with the test results.