• 제목/요약/키워드: elastic module

검색결과 58건 처리시간 0.025초

교정용 고무탄성재료의 생역학적 성질에 관한 연구 (A STUDY ON THE BIOMECHANICAL PROPERTIES OF ORTHODONTIC RUBBER ELASTIC MATERIALS)

  • 송현섭;김상철
    • 대한치과교정학회지
    • /
    • 제21권3호
    • /
    • pp.563-580
    • /
    • 1991
  • The purpose of this study was to investigate and compare the biomechanical properties of orthodontic rubber elastic materials. Latex bands, nylon-covered elastic threads and polyurethane-based elastic modules, delivering $205{\pm}10$ grams force at 30mm stretching state were selected and stored separately in 3 environments-air ($22{\pm}3^{\circ}C$), distilled water ($37{\pm}1^{\circ}C$), or natural saliva ($37{\pm}1^{\circ}C$). And, the amount of remaining force and permanent elongation of each sample were measured on Instron at interval of 1 hour, 6 hours, 12 hours, 24 hours, 1 week, and 2 weeks. So the data derived were analyzed statistically. The results were as follows: 1. Force decay and permanent elongation of all materials increased with time lapsed; elastic module, latex band and nylon-covered elastic thread in that order of the amount of force decay; elastic module, elastic thread, latex band in that order of the amount of permanent elongation. 2. Among environmental conditions, force decay and permanent elongation in natural saliva, most increased, and those in air, least increased. 3. There was a negative correlation between force decay and permanent elongation. 4. Force decay and permanent elongation were most affected by the material itself, time and environments in that order. 5. After 24 hours in saliva, the percentage of remaining force in elastic module was 51.9% (107.37grams); in latex band, 83.2%(172.62grams); in elastic thread, 85.0%(179.25grams). After 2 weeks in saliva, the percentage of remaining force in elastic module was 42.9%(88.75grams); in latex band, 74.5%(154.50grams); in elastic thread, 77.6%(163.75grams).

  • PDF

바닥 충격음 저감용 소재의 동탄성 계수에 관한 연구 (A Study on the Dynamic Elastic Modulus of the materials for Floor Impact Sound Reduction)

  • 박춘근;이종필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.930-935
    • /
    • 2005
  • In order to synthesis of the materials and modulus for floor impact sound reduction, we investigated effect on dynamic elastic modulus of floor impact sound reduction materials and module made by inorganic porous materials, EVA chips and so on. We find correlation property between dynamic elastic modulus and light-weight impact noise. And we measured the dynamic elastic modulus of materials and module for floor impact sound reduction. And we predicted reduction efficiency on floor Impact Noise of those. The dynamic elastic modulus is reduced by increase of filler contents and filler species. When the materials for floor impact sound reduction is consisted of l5wt% EVA Chip and l5wt% inorganic porous materials, its dynamic elastic material is the lowest. And when the module is consisted of PE (upper side), PS embossing board(lower side) and the materials for floor impact sound reduction(middle), its dynamic elastic material is the lowest.

  • PDF

선체변형을 고려한 탄성 축계정렬 설계 프로그램 개발 (Development of Elastic Shaft Alignment Design Program)

  • 정준모;최익흥
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.512-520
    • /
    • 2006
  • The effects of flexibilities of supporting structures on shaft alignment are growing as ship sizes are Increasing mainly for container carrier and LNG carrier. But, most of classification societies not only do not suggest any quantitative guidelines about the flexibilities but also do not have shaft alignment design program considering the flexibility of supporting structures. A newly developed program, which is based on innovative shaft alignment technologies including nonlinear elastic multi-support bearing concept and hull deflection database approach, has S basic modules : 1)fully automated finite element generation module, 2) hull deflection database and it's mapping module on bearings, 3) squeezing and oil film pressure calculation module, 4) optimization module and 5) gap & sag calculation module. First module can generate finite element model including shafts, bearings, bearing seats, hull and engine housing without any misalignment of nodes. Hull deflection database module has built-in absolute deflection data for various ship types, sizes and loading conditions and imposes the transformed relative deflection data on shafting system. The squeezing of lining material and oil film pressures, which are relatively solved by Hertz contact theory and built-in hydrodynamic engine, can be calculated and visualized by pressure calculation module. One of the most representative capabilities is an optimization module based on both DOE and Hooke-Jeeves algorithm.

선배열 예인 음탐기의 음향 모듈을 따라 전파하는 축대칭 진동에 기인한 음향 센서 자체 소음 해석 (Self Noise Analysis of Towed Array Sonar Induced by Axisymmetric Vibrations Propagating Along Fluid-filled Elastic Hoses)

  • 유정수;신현경;안형택;권오조
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.437-446
    • /
    • 2011
  • Performance of array sonars towed underwater is limited due to the self-noise induced mainly by the strumming vibration of the towing cable and also turbulent flow around the acoustic sensor module. The vibration of the towing cable generates axisymmetric waves that propagate along the acoustic module of the array sonar and produce self-noise. The present study aims to investigate the characteristics of the self-noise induced by the axisymmetric vibrations of the acoustic module. The waves of interest are the bulge and extensional waves propagating along the fluid-filled elastic hose. Dispersion relations of these waves are predicted by means of the numerical simulation to evaluate the wave speeds. The self-noise induced by the axisymmetric waves are formulated taking into account the damping of the elastic hose and the effect of the damping is investigated.

심전도 및 수면시 체동 측정 모듈 장착을 위한 브래지어 프로토타입 개발 (A Development of Brassiere Prototype for Attaching the Measuring Module of ECG and Body Movement while Sleeping)

  • 권수애;손부현
    • 패션비즈니스
    • /
    • 제21권2호
    • /
    • pp.78-90
    • /
    • 2017
  • In this study, brassiere prototype was developed for attaching the measuring module of ECG measurement and body movement while sleeping. For ECG measurement, textile electrodes was made of stretch fabric containing polyurethane in consideration of elasticity of brassiere band. It was used as a conductive yarn by silver coating on the warp. The textile electrodes was woven with twisted twill to increase the density of conductive yarns. The pressure of the brassiere band was enough to sensing stably the ECG, and the elastic band of the brassiere was designed to be wider than 3cm to install the textile electrodes inside, so that textile electrodes was close fitting to the skin at a constant pressure without lifting. The textile electrodes coated with silicon on rear was attached to brassiere elastic band, and the module was installed with a snap connector to textile electrodes of brassiere band. The module was suitable to monitering ECG measurement of a typical R peak, pulse rate and body movement while sleeping without interfering.

Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method

  • Orbanich, C.J.;Ortega, N.F.
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.169-182
    • /
    • 2013
  • The mechanical behavior of rectangular foundation plates with perimetric beams and internal stiffening beams of the plate is herein analyzed, taking the foundation design into account. A series of dimensionless parameters related to the geometry of the studied elements were defined. In order to generalize the problem statement, an initial settlements was considered. A numeric procedure was developed for the resolution by means of the Finite Differences Method that takes into account the stiffness of the plate, the perimetric and internal plate beams and the soil reaction module. Iterative algorithms were employed which, for each of the analyzed cases, made it possible to find displacements and reaction percentages taken by the plate and those that discharge directly into the perimetric beams, practically without affecting the plate. To enhance its mechanical behavior the internal stiffening beams were prestressed and the results obtained with and without prestressing were compared. This analysis was made considering the load conditions and the soil reaction module constant.

Preparation of a Semi-Conductive Thin Film Sensor for Measuring Occlusal Force

  • Yu, Siwon;Kim, Nari;Lee, Youngjin
    • 센서학회지
    • /
    • 제24권2호
    • /
    • pp.88-92
    • /
    • 2015
  • In order to study the semi-conductive characteristics of carbon black-filled ethylene-propylene-diene monomer (EPDM) composite film, which is used for measuring occlusal force, composite samples with volume ratios of carbon black to EPDM ranging from 30% to 70% were prepared. The process of making a composite film consists of two steps, which involve the preparation of a slurry composition and the fabrication of a thin film using solution casting and a lamination process. To prepare the slurry composition, we dispersed carbon black nanoparticles into an organic solvent before mixing with an EPDM solution in toluene. The mechanical and electrical properties of the resulting carbon black-filled EPDM film were then investigated, and the results showed that the electrical resistance of a film decreases with the increase in the carbon black content. Furthermore, improved elastic recovery was observed after cross-linking the EPDM.

Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories

  • Ebrahimi, Farzad;Rostami, Pooya
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.495-504
    • /
    • 2018
  • The current study is dedicated to study the thermal effects of wave propagation in beams, reinforced by carbon nanotubes (CNT). Beams, made up of carbon nanotube reinforced composite (CNTRC) are the future materials in various high tech industries. Herein a Winkler elastic foundation is assumed in order to make the model more realistic. Mostly, CNTs are pervaded in cross section of beam, in various models. So, it is tried to use four of the most profitable reconstructions. The homogenization of elastic and thermal properties such as density, Yong's module, Poisson's ratio and shear module of CNTRC beam, had been done by the demotic rule of mixture to homogenize, which gives appropriate traits in such settlements. To make this investigation, a perfect one, various shear deformation theories had been utilized to show the applicability of this theories, in contrast to their theoretical face. The reigning equation had been derived by extended Hamilton principle and the culminant equation solved analytically by scattering relations for propagation of wave in solid bodies. Results had been verified by preceding studies. It is anticipated that current results can be applicable in future studies.

경량 의수용 SMA 구동식 생체모방 손가락 모듈 (SMA-driven Biomimetic Finger Module for Lightweight Hand Prosthesis)

  • 정성윤;문인혁
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.69-75
    • /
    • 2012
  • This paper proposes a biomimetic finger module to be used in a lightweight hand prosthesis. The finger module consists of finger skeleton and an actuator module driven by SMA (Shape Memory Alloy). The prototype finger module can perform flexion and extension motions; finger flexion is driven by a contraction force of SMA, but it is extended by an elastic force of an extension spring inserted into the finger skeleton. The finger motions are controlled by feedback of electric resistance of SMA because the finger module has no sensors to measure length and angle. Total weight of a prototype finger module is 30g. In experiments the finger motions and finger grip force are tested and compared with simulation results when a constant contraction force of SMA is given. The experimental results show that the proposed SMA-driven finger module is feasible to the lightweight hand prosthesis.

A NEW FEEDBACK TECHNIQUE FOR TUNNEL SAFETY BY USING MEASURED DISPLACEMENTS DURING TUNNEL EXCAVATION

  • Sihyun PARK;Yongsuk SHIN;Sungkun PARK
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.432-439
    • /
    • 2009
  • This research project was carried out to develop the technique to assess quantitatively and rapidly the stability of a tunnel by using the measured displacement at the tunnel construction site under excavation. To achieve this purpose, a critical strain concept was introduced and applied to an assessment of a tunnel under construction. The new technique calculates numerically the strains of the surrounding ground by using the measured displacements during excavation. A numerical practical system was developed based on the proposed analysis technique in this study. The feasibility of the developed analysis module was verified by incorporating the analysis results obtained by commercial programs into the developed analysis module. To verify the feasibility of the developed analysis module, analysis results of models both elastic and elasto-plastic grounds were investigated for the circular tunnel design. Then the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using critical strain concept. It was verified that stress conditions of in-situ ground and ground material properties were accurately assessed by inputting the calculated displacement obtained by commercial program into this module for the elastic ground. However for the elasto-plastic ground, analysis module can reproduce the initial conditions more closely for the soft rock ground than for the weathered soil ground. The stability of tunnels evaluated with two types of strains, that is, the strains obtained by dividing the crown displacement into a tunnel size and the strains obtained by using the analysis module. From this study, it is confirmed that the critical strain concept can be fully adopted within the engineering judgment in practical tunnel problems and the developed module can be used as a reasonable tool for the assessment of the tunnel stability in the field.

  • PDF