• 제목/요약/키워드: elastic material behavior

검색결과 626건 처리시간 0.026초

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying;He, Yuhao;Lei, Jincheng;Liu, Zishun;Swaddiwudhipong, Somsak
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.605-616
    • /
    • 2014
  • When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

On the effect of the micromechanical models on the free vibration of rectangular FGM plate resting on elastic foundation

  • Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Benachour, Abdelkader;Bedia, El Abbas Adda
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.117-128
    • /
    • 2018
  • In this research work, free vibrations of simply supported functionally graded plate resting on a Winkler-Pasternak elastic foundation are investigated by a new shear deformation theory. The influence of alternative micromechanical models on the macroscopic behavior of a functionally graded plate based on shear-deformation plate theories is examined. Several micromechanical models are tested to obtain the effective material properties of a two-phase particle composite as a function of the volume fraction of particles which continuously varies through the thickness of a functionally graded plate. Present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. The energy functional of the system is obtained using Hamilton's principle. The closed form solutions are obtained by using Navier technique, and then fundamental frequencies are found by solving the results of eigenvalue problems. Finally, the numerical results are provided to reveal the effect of explicit micromechanical models on natural fundamental frequencies.

슬리브드 폴리머 발사체의 충격시 벌징 거동 패턴에 미치는 코어 재료의 영향 (Influences of Core Materials during Impact The Bulging Behavior of Sleeved Polymer Projectiles)

  • 신형섭;박성택;정윤철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.198-203
    • /
    • 2008
  • In the present study, the deformation behavior of both of metal and polymer combination on impact was investigated. They have showed a different deformation behavior when the co-axially combined projectile was impacted on rigid target. The theory according to Taylor's simplified approach assumes an ideally rigid-plastic material model exhibiting rate-independent behavior and simple one-dimensional wave propagation concepts that neglect radial inertia. In the case of impact with polymeric materials, elastic strain in general are not negligible compared with plastic strain; and the rigid-plastic material behavior assumed by Taylor for metallic materials cannot be applied any more. Since, the sleeve and the core materials have widely different mechanical properties, they will produce a significant difference of mechanical impedance with each other. Therefore these impedance mismatch influences on the deformation behavior sleeved polymer projectile on impact. As a result, sleeved projectiles will generate a very interesting impact behavior. Therefore, the according to sleeved metal material and core polymer material can see expected. The objective of this study was to investigate the factors which influences on deformation behavior pattern of sleeve materials surface.

  • PDF

Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability

  • Aksoy, C.O.;Aksoy, G.G. Uyar;Guney, A.;Ozacar, V.;Yaman, H.E.
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In structures excavated in rock mass, load progressively increases to a level and remains constant during the construction. Rocks display different elastic properties such as Ei and ʋ under different loading conditions and this requires to use the true values of elastic properties for the design of safe structures in rock. Also, rocks will undergo horizontal and vertical deformations depending on the amount of load applied. However, under constant loads, values of Ei and ʋ will vary in time and induce variations in the behavior of the rock mass. In some empirical equations in which deformation modulus of the rock mass is taken into consideration, elastic parameters of intact rock become functions in the equation. Hence, the use of time dependent elastic properties determined under constant loading will yield more reliable results than when only constant elastic properties are used. As well known, rock material will play an important role in the deformation mechanism since the discontinuities will be closed due to the load. In this study, Ei and ʋ values of intact rocks were investigated under different constant loads for certain rocks with high deformation capabilities. The results indicated significant time dependent variations in elastic properties under constant loading conditions. Ei value obtained from deformability test was found to be higher than the Ei value obtained from the constant loading test. This implies that when static values of elastic properties are used, the material is defined as more elastic than the rock material itself. In fact, Ei and ʋ values embedded in empirical equations are not static. Hence, this workattempts to emerge a new understanding in designing of safer structures in rock mass by numerical methods. The use of time-dependent values of Ei and ʋ under different constant loads will yield more accurate results in numerical modeling analysis.

재료 물성치의 불확실성에 의한 복합적층판 변위의 확률적 거동 (Probabilistic Behavior of Laminated Composite Plates with Random Material Properties)

  • 노혁천
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.27-32
    • /
    • 2008
  • The laminated composite materials have been applied to various mechanical structures due to their high performance to weight ratios. In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates. The composite materials consist of two different materials which constitute the matrix and fiber. The material properties in the major and minor directions are determined depending on the volume fraction of these two materials. In this study, the elastic modulus and shear modulus are considered as random and the effect of these random properties on the behavior of the composite plate is investigated. We adopt the weighted integral scheme in the formulation, which has been recognized as the most accurate method in the statistical methodologies. For verification of the proposed scheme, Monte Carlo analysis is also performed for the comparison with the proposed scheme.

  • PDF

On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells

  • Mirjavadi, Sayed Sajad;Bayani, Hassan;Khoshtinat, Navid;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.631-640
    • /
    • 2020
  • In this paper, nonlinear vibration behaviors of multi-phase Magneto-Electro-Elastic (MEE) doubly-curved nanoshells have been studied employing Jacobi elliptic function method. The doubly-curved nanoshell has been modeled by using nonlocal elasticity and classic shell theory. An exact estimation of nonlinear vibrational behavior of smart doubly-curved nanoshell has been obtained via Jacobi elliptic function method. This method can incorporate the influences of higher order harmonics leading to an exact estimation of nonlinear vibration frequency. It will be indicated that nonlinear vibrational frequency of doubly-curved nanoshell relies on nonlocal effect, material composition, curvature radius, center deflection and electro-magnetic field.

판재에 있는 구멍 또는 이종재료 사이에서의 크랙 전파 거동 (A Behavior of the Crack Propagation between Holes or Another Materials on the Panel)

  • 조재웅;한문식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.264-271
    • /
    • 2005
  • This study investigates the behavior of fatigue crack propagating between holes or holes filled with another materials. When holes or the holes bonded with another materials exist near center crack symmetrically, crack propagation rate is influenced by the bonding force of brazing part and the elastic modulus ratio of another material to matrix. It is experimentally and analytically confirmed that the center crack stops when its tip reaches near the center line of the holes and a small crack is initiated from the boundaries of holes or the holes filled with another materials and it propagates to final fracture. The mechanical behaviors of center crack near another materials are also investigated.

  • PDF

판재에 있는 구멍 또는 이종재료 사이에서의 크랙 전파 거동 (A Behavior of the Crack Propagation between Holes or Another Materials on the Panel)

  • 한문식;조재웅
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.74-82
    • /
    • 2005
  • This study investigates the behavior of fatigue crack propagating between holes or holes filled with another materials. When holes or the holes bonded with another materials exist near center crack symmetrically, crack propagation rate is influenced by the bonding force of brazing part and the elastic modulus ratio of another material to matrix. It is experimentally and analytically confirmed that the center crack stops when its tip reaches near the center line of the holes and a small crack is initiated from the boundaries of holes or the holes filled with another materials and it propagates to final fracture. The mechanical behaviors of center crack near another materials are also investigated.

Numerical assessment of nonlocal dynamic stability of graded porous beams in thermal environment rested on elastic foundation

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.455-461
    • /
    • 2022
  • Numerical assessment of the dynamic stability behavior of nonlocal beams rested on elastic foundation has been provided in the present research. The beam is made of fucntional graded (FG) porous material and is exposed to thermal and humid environments. It is also consiered that the beam is subjected to axial periodic mechanical load which especific exitation frequency leading to its instability behavior. Beam modeling has been performed via a two-variable theory developed for thick beams. Then, nonlocal elasticity has been used to establish the governing equation which are solved via Chebyshev-Ritz-Bolotin method. Temperature and moisture variation showed notable effects on stability boundaries of the beam. Also, the stability boundaries are affected by the amount of porosities inside the material.

방호공을 고려한 선박의 충돌하중 (The vessel collision load on bridge with fender system)

  • 이계희;고재용;이성로
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 2004
  • In this study, the impact load on bridge by vessel collision in consideration of fender system is evaluated by numerical method. The bow of object vessel(DWT5000) is standardized, and modeled by shell elements. The main body of objective vessel is modeled by beam elements that present mass distribution and stiffness of vessel. The buoyancy effect of vessel is considered as linear spring. The two types of fender systems, such as steel and rubber are analyzed in this study. In steel fender system, the steel plates that absorb collision energy by its collapse are modeled by shell element with stiffener. The steel is material modeled elastic-plastic material. In the rubber fender system, the rubber material is modeled hyper-elastic material and the main body of fender is modeled by solid elements. The global impact responses of vessel and fender system are evaluated by explicit dynamic scheme. The results show that the magnitude of vessel collision force are depended on the material behavior of fender system. Also the values of collision load are conservative compare to the those of design codes.

  • PDF