• 제목/요약/키워드: elastic material

검색결과 2,396건 처리시간 0.024초

금형의 피로수명 예측에 관한 연구 (A Study on the Prediction of Fatigue Life in Die)

  • 여은구
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.87-92
    • /
    • 1999
  • Generally the life of die is limited by fatigue fracture or dimensional inaccuracy originated from wear. In this paper to predict the fatigue life of die the stress and strain histories of die can be predicted by the analysis of elastic-plastic finite element method and the elastic analysis of die during the process analysis of workpiece. Also the stress-life curve of die material can be obtained through experiment. With the above to재 facts we propose the analysis method of prediction fatigue life in die,. In the proposed model the analysis of elastic-plastic finite element method for material is carried out by using ABAQUS. Surface force resulted from the contacting border of the die and workpiece is transformed into the nodal force of die to implement elastic analysis. besides the proposed analysis model of die is applied to extrusion die and forging. die.

  • PDF

극저온용 구조재료의 파괴인성평가법에 관한 연구 (A study on the fracture toughness evaluating method for cryogenic structural material)

  • 권일현;정세희
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.64-72
    • /
    • 1998
  • This paper was undertaken to develop the fracture toughness testing method using small and single specimen compared to the conventional method in evaluating elastic-plastic fracture toughness of the superconducting magnet structural material at cryogenic temperature. The elastic-plastic fracture toughness test was conducted by using the unloading compliance method recommended by ASTM E813-89 to accomplish the above purpose. And, the 20% side-grooved 0.5TCT and 1TCT specimens were used to evaluate the fracture toughness by using as possible as miniaturized CT specimen. The unloading compliance method was a very useful method in evaluating elastic-plastic fracture toughness at cryogenic temperature. It could be taken valid fracture toughness values by using 20% side-grooved 0.5TCT specimen recommended by ASTM E813-89.

음향공진법을 이용한 PVC/MBS의 탄성 및 감쇠 특성 평가 (An Assessment of Elastic and Damping Material Properties of PVC/MBS by an Acoustic Resonance Method)

  • 박명균;박세만;최영식;박상규
    • 한국소음진동공학회논문집
    • /
    • 제12권10호
    • /
    • pp.766-772
    • /
    • 2002
  • In this investigation, experimental attempts were made to observe and determine the variations in elastic and damping properties of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests In this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. It was found that the magnitudes of elastic constants decrease while the damping capacity improve when MBS rubber was added in the range up to 9 phr.

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie;Liu, Jinxi
    • Structural Engineering and Mechanics
    • /
    • 제27권5호
    • /
    • pp.609-623
    • /
    • 2007
  • The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.

디지털이미지를 이용한 폐기물 혼합 콘크리트의 강도 평가 (Evaluation of strength of waste material mixed concrete using digital image)

  • 윤현석;이기호;박준범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1390-1395
    • /
    • 2005
  • To analyze the effects of oyster shell particles, inserted in the self-hardening matrix such as cement paste, on strength, homogenization analysis using micro structure was used to estimate and assess the apparent elastic modulus of oyster shell particle. DIB modeling technique was used to represent of the micro structure of oyster shell mixed concrete. The results showed that the apparent elastic modulus of LOS (large oyster shell particle) was changed with the amount of LOS inserted. In particular, when the amount of LOS was 200% of the weight of cement, the apparent elastic modulus of LOS tended to decrease rapidly. This could mean that the strength of oyster shell mixed concrete is much affected by LOS inserted material in mixed ratio of 200%.

  • PDF

Effective moment of inertia for rectangular elastoplastic beams

  • Faller, Ronald K.;Rosson, Barry T.
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.95-110
    • /
    • 1999
  • An effective moment of inertia is developed for a rectangular, prismatic elastoplastic beam with elastic, linear-hardening material behavior. The particular solution for a beam with elastic, perfectly plastic material behavior is also presented with applications for beam bending in closed-form. Equations are presented for the direct application of the virtual work method for elastoplastic beams with concentrated and distributed loads. Comparisons are made between the virtual work method deflections and the deflections obtained by using an average effective moment of inertia over two lengths of the beam in the elastoplastic region.

탄성 날개 끝단의 공력 소음에 관한 전산해석 연구 (Computational Study on Aeroacoustics of an Elastic Cantilevered Trailing-Edge)

  • 황본창;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.159-168
    • /
    • 2005
  • Noise generated by the blunt trailing edge of lifting surfaces is investigated in this study using fluid structure interaction theory. First, through the eddy modeling, noise generation doe to the flow instability on the rigid trailing edge is surveyed. Then the behavior of elastic cantileverd beam is investigated. Parametric study based on various material properties is employed to analyze the motion of the beam. Moreover, each eigenmode approach of cantilevered beam is used to find when flow induced vibration is resonant. To analyze elastic behavior of cantilever beam efficiently, moving grid generation technique based on non-conservative form of Navier-Stokes equation is used. Equation of the motion associated with the cantilever beam is discretized by the Galerkin procedure with forced vibration. As a consequence, behavior of the elastic cantilevered beam is stable when the first mode natural frequency of the material is relatively higher than that of flow induced pressure fluctuation.

  • PDF

Radial vibration behaviors of cylindrical composite piezoelectric transducers integrated with functionally graded elastic layer

  • Wang, H.M.;Wei, Y.K.;Xu, Z.X.
    • Structural Engineering and Mechanics
    • /
    • 제38권6호
    • /
    • pp.753-765
    • /
    • 2011
  • The radial vibration behaviors of a circular cylindrical composite piezoelectric transducer (CPT) are investigated. The CPT is composed of a piezoelectric ring polarized in the radial direction and an elastic ring graded in power-law variation form along the radial direction. The governing equations for plane stress state problem under the harmonic excitation are derived and the exact solutions for both piezoelectric and functionally graded elastic rings are obtained. The characteristic equations for resonant and anti-resonant frequencies are established. The presented methodology is fit to carry out the parametric investigation for composite piezoelectric transducers (CPTs) with arbitrary thickness in radial direction. With the aid of numerical analysis, the relationship between the radial vibration behaviors of the cylindrical CPT and the material inhomogeneity index of the functionally graded elastic ring as well as the geometric parameters of the CPTs are illustrated and some important features are reported.

가스배관재의 탄소성파괴인성에 미치는 측면홈영향 (Effect of Side Grooved on the Elastic Plastic Fracture Toughness of Gas Piping Meterial)

  • 임만배;차귀준;윤한기;김정호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.350-356
    • /
    • 2001
  • SG-50 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the J$_{IC}$. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases the scattering of them and tunneling and shear lip by the side groove.e.

  • PDF

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.