• 제목/요약/키워드: elastic flexural buckling

검색결과 30건 처리시간 0.02초

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • 제6권3호
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

Stability of structural steel tubular props: An experimental, analytical, and theoretical investigation

  • Zaid A. Al-Sadoon;Samer Barakat;Farid Abed;Aroob Al Ateyat
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.143-159
    • /
    • 2023
  • Recently, the design of scaffolding systems has garnered considerable attention due to the increasing number of scaffold collapses. These incidents arise from the underestimation of imposed loads and the site-specific conditions that restrict the application of lateral restraints in scaffold assemblies. The present study is committed to augmenting the buckling resistance of vertical support members, obviating the need for supplementary lateral restraints. To achieve this objective, experimental and computational analyses were performed to assess the axial load buckling capacity of steel props, composed of two hollow steel pipes that slide into each other for a certain length. Three full-scale steel props with various geometric properties were tested to construct and validate the analytical models. The total unsupported length of the steel props is 6 m, while three pins were installed to tighten the outer and inner pipes in the distance they overlapped. Finite Element (FE) modeling is carried out for the three steel props, and the developed models were verified using the experimental results. Also, theoretical analysis is utilized to verify the FE analysis. Using the FE-verified models, a parametric study is conducted to evaluate the effect of different inserted pipe lengths on the steel props' axial load capacity and lateral displacement. Based on the results, the typical failure mode for the studied steel props is global elastic buckling. Also, the prop's elastic buckling strength is sensitive to the inserted length of the smaller pipe. A threshold of minimum inserted length is one-third of the total length, after which the buckling strength increases. The present study offers a prop with enhanced buckling resistance and introduces an equation for calculating an equivalent effective length factor (k), which can be seamlessly incorporated into Euler's buckling equation, thereby facilitating the determination of the buckling capacity of the enhanced props and providing a pragmatic engineering solution.

Analytical study of buckling profile web stability

  • Taleb, Chems eddine;Ammari, Fatiha;Adman, Redouane
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.147-158
    • /
    • 2015
  • Elements used in steel structures may be considered as an assembly of number of thin flat walls. Local buckling of these members can limit the buckling capacity of axial load resistance or flexural strength. We can avoid a premature failure, caused by effects of local buckling, by limiting the value of the wall slenderness which depend on its critical buckling stress. According to Eurocode 3, the buckling stress is calculated for an internal wall assuming that the latter is a simply supported plate on its contour. This assumption considers, without further requirement, that the two orthogonal walls to this wall are sufficiently rigid to constitute fixed supports to it. In this paper, we focus on webs of steel profiles that are internal walls delimited by flanges profiles. The objective is to determine, for a given web, flanges dimensions from which the latter can be considered as simple support for this web.

Web strain based prediction of web distortion influence on the elastic LTB limiting length

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.271-278
    • /
    • 2022
  • Buckling is one of the most critical phoneme in the design of steel structures. Lateral torsional buckling (LTB) is particularly significant for slender beams generally subjected to loading in plane. The web distortion effects on LTB are not addressed explicitly in standards for flexural design of steel I-section members. Hence, the present study is focused to predict the influence of the web distortion on the elastic (Lr) limiting lengths given in American Institute of Steel Construction (AISC) code for the lateral torsional buckling (LTB) behavior of steel beams due to no provision in the code for consideration of web distortion. For this aim, the W44x335 beam is adopted in the buckling analysis carried out by the ABAQUS finite element (FE) program since it is one of the most critical sections in terms of lateral torsional buckling (LTB). The strain results at mid-height of the web at mid-span of the beam are taken into account as the monitoring parameters. The web strain results are found to be relatively greater than the yield strain value when L/Lr is equal to 1.0. In other words, the ratio of L/Lr is estimated from the numerical analysis to be about 1.5 when the beam reaches its first yielding at mid-span of the beam at mid-height of the section. Due to the effect of web distortion, the elastic limiting length (Lr) from the numerical analysis is obtained to be considered as greater than the calculated length from the code formulation. It is suggested that the formulations of the limiting length proposed in the code can be corrected considering the influence of the web distortion. This correction can be a modification factor or a shape factor that reduces sectional slenderness for the LTB formulation in the code.

2차좌굴을 포함하는 선체판의 대변형거동에 관한 연구 (A Study on the Large Deflection Behavior of Ship Plate with Secondary Buckling)

  • 고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.565-573
    • /
    • 1999
  • Hihg Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view points this is very preferable since the reduction in the hull weight. however to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross sect6ion of a ship's hull also decreases. This may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonliner analysis of isolated and stiffened plates is required for structural sys-tem analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluated the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

면내압축하중을 받는 선체판의 비선형거동에 관한 연구 (A Study on the Nonlinear Behavior of Plate under Thrust)

  • 고재용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1996년도 The Korean Institute of Navigation 1996년도 한·중 국제학술 심포지움 및 추계학술발표회 논문집
    • /
    • pp.95-110
    • /
    • 1996
  • High Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view point this is very preferable since the reduction in the hull weight. However to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling, buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross section of a ship's hull also decreases. this may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonlinear analysis of isolated and stiffened plates is required for structural system analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluate the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

상자형의 압축플랜지 휨강도 및 좌굴거동에 관한 연구 (A Study on Flexural Strength and Buckling Behavior of Compressional Flange for Box Girder)

  • 김홍준;정희효
    • 한국강구조학회 논문집
    • /
    • 제23권6호
    • /
    • pp.679-690
    • /
    • 2011
  • 판의 탄성좌굴에 관해서는 이미 많은 이론적 실험적 연구가 이루어져 여러 가지 경계조건 및 하중에 대해서 좌굴응력을 결정하는데 큰 어려움이 없다. 현재 플랜지 및 웨브판에 대한 설계기준도 휨에 대한 좌굴응력을 기준으로 하고 있으며, 후좌굴강도에 안전율을 적용하여 고려하도록 하고 있다. 그러므로 본 연구는 이상적인 조건하에서 전개되는 선형좌굴이론에서 뿐만이아니라, 유한처짐을 허용하는 극한강도 설계개념에 까지 확장되어진다. 또한, 이 개념에 근거한 실험적 연구가 이루어져 단순지지 조건을 만족시킬 수 있는 보강재에 대한 현 시방규정의 적정성을 분석 검토하고자 한다. 본 연구의 결과를 토대로 세장비의 변화에 따른 강상자형의 극한강도를 결정하는 식을 제시하고자 한다.

사장교 거더와 주탑의 안정성 검토를 위한 ASD와 LRFD 설계법 비교 (Comparison of Stability Evaluation Methods using ASD and LRFD Codes for Girders and Towers of Steel Cable-Stayed Bridges)

  • 최동호;유훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.1001-1008
    • /
    • 2006
  • The main objective of this paper is to compare economical effectiveness of typical methods for checking stability in principal components of steel cable-stayed bridges. Elastic and inelastic buckling analyses are carried out for frame-like numerical models of cable-stayed bridges. The axial-flexural interaction equations prescribed in AASHTO Allowable Stress Design (ASD) and AASHTO Load and Resistance Factor Design (LRFD) are used in order to check the stability of principal components. Parametric studies are performed for numerical models which have the center span length of 300m, 600m, 900m and l200m with different girder depths. Peak values of the interaction equations are calculated at the intersection point between girders and towers. These peak values are considered as a major factor to design of principal components of cable-stayed bridges. As a result, more economical design for girders and towers can be feasible using the inelastic buckling analysis. In addition, LRFD codes are more economical about 20% on the average than ASD codes for all numerical models of cable-stayed bridges.

  • PDF

HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면 (Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web)

  • 조은영;신동구
    • 한국강구조학회 논문집
    • /
    • 제24권2호
    • /
    • pp.217-231
    • /
    • 2012
  • HSB 고강도 강재를 적용한 균일모멘트를 받는 세장 복부판을 갖는 강거더에 대하여 비탄성 횡비틂좌굴 거동을 상용 ABAQUS 프로그램을 이용하여 비선형 유한요소해석으로 분석하였다. 해석대상 강거더는 압축플랜지의 국부좌굴이 휨강도를 지배하지 않도록 플랜지는 조밀 또는 비조밀 요소에 해당하는 세장비를 갖도록 설계하였으며, 횡방향 비지지길이는 탄성 횡비틂좌굴 강도 이상의 휨강도를 갖도록 선정하였다. HSB600 및 HSB800 강재로 제작된 균질단면 강거더와 HSB800과 SM570-TMC 강재를 동시에 적용한 하이브리드 단면를 고려하였고, 일반강재와의 상대적인 비교를 위하여 SM490-TMC 균질단면 강거더에 대한 해석도 수행하였다. 비선형 유한요소해석 시에는 플랜지와 복부판을 쉘요소로, 강재는 탄소성-변형경화 재료로 모델링하였다. 초기변형과 단면의 잔류응력을 고려하였으며 이들이 비탄성 횡비틂좌굴 영역에서 휨거동에 미치는 영향을 분석하였다. 총 64개의 해석대상 강거더에 대하여 FE 해석과 설계식에 의한 휨저항강도를 비교한 결과, HSB 강재를 적용한 균질단면 및 하이브리드 단면 거더의 비탄성 횡비틂좌굴에 의한 휨강도는 현 AASHTO LRFD 압축플랜지 휨강도 탄성 설계규정을 적용하여 산정할 수 있는 것으로 분석되었다.

비탄성 강재 부재의 좌굴 해석 (Buckling Analysis of Inelastic Steel Members)

  • 길흥배
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.29-43
    • /
    • 2000
  • 본 연구에서는 비탄성 부재들의 좌굴 강도를 결정하기 위한 계산적으로 효율적인 비탄성 좌굴해석 프로그램이 개발되었다. 본 프로그램은 휨 좌굴, 휨-비틂 좌굴 혹은 국부좌굴에 의해 붕괴되는 탄성과 비탄성 부재들의 좌굴 강도 및 형상을 결정할 수 있다. 일축 대칭이나 2축 대칭인 I 형 부재를 해석할 수 있다. 복부판은 판 요소를 이용하여 모델되고, 플랜지는 보 요소로 모델되었다. 재료의 비탄성 응력-변형률 관계를 모사하기 위하여 다선형 등방경화 법칙과 증분이론이 사용되었다. 프로그램은 이론치와 실험값들을 이용하여 입증되었다. 프로그램의 결과는 이론치 및 실험값들과 잘 일치였다.

  • PDF