• Title/Summary/Keyword: elastic deformation of die

Search Result 72, Processing Time 0.022 seconds

The Prediction of Elastic Deformation for Cold Forging Die (냉간 단조용 금형의 탄성변형 예측)

  • 이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.108-111
    • /
    • 1999
  • Elastic deformation of die has been investigated to improve the accuracy of cold forged parts. In order to improve the accuracy of forged parts we have investigated the elastic deformation of forging die by analysis with commercial. F. E. M code DEFORM and experiments using he strain gages. In the F. E. M analysis two types are used for elastic deformation of die. the one considers die as elastic body and the other considers the die as rigid body. The latter relatively takes a lot of time. The results from the two types are very similar with each other. Considering the results of analysis and experiments it is likely that the elastic strain of forging die is very small.

  • PDF

A Study on the Deformation Measurement of Backward Extrusion Dies using Strain Gauge (스트레인 게이지를 이용한 후방압출금형의 변형측정에 관한 연구)

  • Yeo, Hong-Tae;Song, Yo-Sun;Choi, Young;Heo, Kwan-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.713-716
    • /
    • 2002
  • The dimensional accuracy of the cold forged products is strongly dependent on the elastic behavior of the die. The elastic deformation of the die is continuously changed during the process. Therefore, it is needed to measure the deformation of die. Strain gauges are used to measure the elastic strains in the die during cold backward extrusion process. The strain gauges are attached on the die surface and embedded at the interface between the die insert and the stress ring. In order to compare the results with the FE-analysis, the rigid-plastic FE-analysis of cold backward extrusion process using DEFORM-3D has been performed, and the analysis of elastic deformation of the die has been done by using ANSYS with non-linear contact.

  • PDF

The elastic strain analysis of forged product and die according to the forging mode (단조형식에 따른 단조품과 금형의 탄성 변형에 관한 연구)

  • Lee, D.K.;Lee, Y.S.;Kim, W.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.586-591
    • /
    • 2001
  • In the cold forging, elastic deformation of the die has been investigated to improve the accuracy of cold forged parts with F.E.M analysis using DEFORM, and with experiments using strain gauges. In the experiments, initial billet was selected to easily find the effect of elastic deformation according to the forging modes, extrusion and upsetting type, and only extrusion type. Elastic deformation of the die can be obtained by the signal from the strain gauges and this signal can be amplified by data acquisition system during the process. In the F.E.M analysis, two types of analysis are used to predict elastic strain of the die. To improve an accuracy of forged product and die dimension, this study compared with strain distribution between experiment and F.E.M analysis. As a result, the history of the deformation of the die and elastic recovery of forged product can be obtained by the elastic strain analysis of forged product and die according to the forging modes.

  • PDF

The Prediction of Elastic Deformation of Forging Die to Improve Dimensional Accuracy (단조품의 정밀도 향상을 위한 금형의 탄성변형 예측)

  • Choe, Jong-Ung;Lee, Yeong-Seon;Lee, Jeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2610-2618
    • /
    • 2000
  • In this paper, the elastic deformation of cold forging die has been investigated to improve the accuracy of forged parts with FEM analysis and experiments using the strain gages. In the finite element analysis, two types of analysis are used to predict elastic deformation of die. The one is that dies are considered to be elastic body from initial stage to final one, and the other is that the dies are considered to be rigid body during forging simulation and then considered to be elastic body at elastic analysis. Considering the results of analysis and experiments, it is likely that the analytical results are in good agreement with experimental inspections. The method using the elastic assumption of die relatively takes a lot of time to simulate the forming operation. However, It is better that using an elastic die to predict not only the shape of product but also filling of die cavity.

Measurement and FEM Analysis of Elastic Deformation According to the Forging Stages in Cold Forging Die (냉간단조용 금형의 변형모드에 따른 탄성변형량의 측정 및 유한요소 해석)

  • 이대근;이영선;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.112-116
    • /
    • 2002
  • In cold forging, the elastic behavior of the die has a direct influence on the accuracy of the forging part. And the die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during loading, unloading, and ejecting stage. Uni-axial strain gauges are used to measure elastic strain of die during each forging stage. Strain gauges are attached on the surface of die. A commercial F.E.M code, DEFORM-2D$\^$TM/ is used to predict elastic strain of die. Two method of F.E.M. analysis are used to compare with measured and calculated elastic strain. One is to regard the die as rigid body over forging cycle. And then, the die sass is analyzed by loading the die with pressure from the forging part. The other is to regard the die as elastic body from forging cycle. The elastic strain of die is calculated and the die is elastically deformed at each strop. The calculated results under the elastic die assumption are well agreed with experimental data using strain gauges.

  • PDF

A Study on the Elastic Deformation of Forged Bevel Gears and Die (단조 베벨 기어의 탄성회복과 금형변형에 관한 연구)

  • 김명곤;강우진;조종래;이정환;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.34-37
    • /
    • 2003
  • Cold forging has several advantages as compared with conventional forming by cutting process. In this study, the elastic deformations of straight bevel gear and die induced by cold forging process are investigated to use 3D-Scanner. So we could estimate the total elastic deformation as comparing between forged bevel gears and die. And finite element analysis has been performed to predict the elastic deformation, each of cold forged bevel gear and die. The predicted values are compared with the experimental values and as a result they are well agreed with experimental data.

  • PDF

Determination of Elastic Recovery for Axi-Symmetric Forged Products (축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF

Study on the Deformation of Die and Product in Closed Die Upsetting (밀폐 업셋팅에서 금형과 제품 변형에 관한연구)

  • 박용복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.94-97
    • /
    • 1999
  • The study has been performed for the relation between die and product in closed die upsetting by the experiment. the strain of die has been given by the simple experiment using the strain gauge located at the outer surface of die and the deformation history of die and product has been given by the experiment and Lame's formula. the product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been given by the experiment and lame's formula. The product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been usually predicted by the experience of industrial engineers of finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful result for the deformation history of die and product through the experiment and Lame's formula at closed die upsetting and can be applied in the die design for product with accurate dimension.

  • PDF

A PRECISION COLD FORGING OF DIFFERENTIAL SIDE GEAR FOR AUTOMOBILE

  • Noh T.D.;Jung S.H.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.63-66
    • /
    • 2003
  • Forged gears have the obvious advantages with the greater utilisation of raw material and high productivity over the machined gears. The forged bevel gear has been used in differential gear for automotive with a high reliance. On the other hand, the studies have been continued to improve the accuracy and expand the applying areas. In this paper, a whole manufacturing process for forged gear from die design and cold forging to heat-treatment was introduced. The stress and elastic deformation for forging die have been analysed by the 3D-FEM-package. The real elastic deformation of die was measured by the strain-gages. The elastic deformation of die was reached to 1mm, in terms of the present study. The analysed quantitative dimension of die was taken into consideration into the CAD/CAM data for forging die.

  • PDF

Study on Dimensional Change in Wire Product During Wire-Drawing Process (선재 인발공정에서 인발제품의 선경변화에 대한 연구)

  • Moon, Chang-Sun;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.723-730
    • /
    • 2012
  • During the cold wire-drawing process, the diameter of a wire is reduced and the length of the wire is increased as the wire passes through the die. The pressure and sliding motion at the interface between the wire and die cause elastic recovery of the workpiece and friction and wear on the die. In addition, wire deformation and frictional heating raise the temperature of the wire and die, resulting in difficulty in manufacturing the drawn products according to a designated inner diameter of the die, deviating from the designated dimension or the inner diameter of the die. In this study, considering the die temperature distribution, the effects of dimensional changes of the drawn products were analyzed quantitatively; these changes are caused by the elastic deformation of the die, the elastic recovery of the workpiece, and the thermal deformation of both the die and the workpiece. It was confirmed that the elastic recovery of the workpiece influenced these changes the most. The initial dies considering these factors could avoid deviation from the designated dimension, and the desired drawn products were obtained by using the designed initial drawing dies.