• Title/Summary/Keyword: elastic coefficient

Search Result 571, Processing Time 0.028 seconds

A Study on Torsional Characteristics of the Car Body Types at Cornering Motion (선회주행 시 차체의 비틀림 특성에 관한 연구)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.739-744
    • /
    • 2017
  • Elastic deformation and fatigue damage can cause the permanent deformation of a kart's frame during turning, affecting the kart's driving performance. A kart's frame does not contain any suspension or differential devices and, therefore, the dynamic behavior caused by torsional deformation when driving along a curve can strongly affect these two kinds of deformations. To analyze the dynamic behavior of a kart along a curved section, the GPS trajectory of the kart is obtained and the torsional stress acting on the kart-frame is measured in real time. The mechanical properties of leisure and racing karts are investigated by analyzing their material properties and conducting a tensile test. The torsional stress concentration and frame distortion are investigated through a stress analysis of the frame on the basis of the obtained results. Leisure and racing karts are tested in each driving condition using driving analysis equipment. The behavior of a kart when being driven along a curved section is investigated through this test. Because load movement occurs owing to centrifugal force when driving along a curve, torsional stress acts on the kart's steel frame. In the case of a leisure kart, the maximum torsional stress derived from the torsional fatigue limit was found to be 230 MPa, and the torsional fatigue limit coefficient was 0.65 when driving at a speed of 40 km/h. Furthermore, the driving elements during the cornering of a kart were measured based on an actual auto-test after installing a driving measurement system, and the driving behavior of the kart was analyzed by measuring its vertical displacement.

Structure and physical properties of Earth Crust material in the Middle of Korean Peninsula(2) : Comparison between elastic Velocity and point-load of core specimen of sedimentary rocks. (한반도 중부권 지각물질의 구조와 물성연구(2) : 퇴적암류 코아시료의 탄성파 속도와 점재하 강도 비교)

  • 송무영;황인선
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.21-37
    • /
    • 1993
  • In order to investigate the correlation of sedimentary rock properties. specific gravity, porosity, water content, sonic wave velodty, and point4oad strength index of core samples of limestones, sandstones and shales were measured. The relationships between density and velocity show $V_p=16300d-38719.3,{\;}V_s1896.4d-29225.1$ of regression equation for sandstones and $Vp=4085d-10264.8,{\;}V_s=3519d-7841.3$ for shales and <$Vp=4085d^2-20747d+303,{\;}V_s=3899d^2-21442d+318$ for limestones. Seismic wave velocity of shales which have high density is lower than that of sandstones, and this seems to be an effect of bedding in shale. P-wave velocity and S-wave velocity of limestones, sandstones and shales show the linear relationships as a whole. The regression equations are respectively calculated V_s=0.26V_p+1041.6m/sec,{\;}V_s=0.43V_p+424.2m/sec,{\;}and{\;}Vs=0.51V_p+261.9m/sec$ and the correlation coefficients of the velocity show r= 0.86 in sandstones, r= 0.75 in limestones and r=0.86 in shales. According to the point4oad strength test for limestones, point4ord strength anisotropy was not so dear even though the specimens show generally the banded structure. Variations of dip angle of bedding whihin the range $30^{\circ}-60^{\circ}$ does not have much influence upon the diametral strength index and axial strength index. From the result of point load test, P-wave velocity increases with point4ord strength index but the regression equations are $V_p=98.5lI{s_d}+4082.1m/sec,{\;}V_p=106.41{s_a}+3954m/sec$ and their correlation coefficient is low.

  • PDF

An analysis of horizontal deformation of a pile in soil using a continuum soil model for the prediction of the natural frequency of offshore wind turbines (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 연속체 지반 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Lee, Jong-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.480-490
    • /
    • 2016
  • As wind turbines become larger and lighter, they are likely to respond sensitively by dynamic loads applied on them. Since the responses at resonances are particularly interested, it is required to be able to predict natural frequencies of wind turbines reliably at early design stage. To achieve this, the foundation-soil analysis is needed to be carried out and a finite element approach is adopted in general. However, the finite element approach would not be appropriate in early design stage because it demands heavy efforts in pile-soil modelling and computing facilities. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to handle. Therefore, they would be a useful tool in predicting a pile-soil interaction, particularly in early design stage. In this study an analysis for a pile inserted in soil is performed. The pile and soil are modelled as a beam and continuum medium, respectively, within an elastic range. In this analysis, influence factors at the pile head for lateral loads are predicted by means of this continuum approach for various length-diameter ratios of the pile. The influence factors predicted are validated with those reported in literature, proposed from a finite element analysis.

Optimization of Crack-Free Polytypoidally Joined Dissimilar Ceramics of Functionally Graded Material (FGM) Using 3-Dimensional Modeling (폴리타이포이드 경사 방식으로 접합 된 이종 세라믹간의 적층 수의 최적화 및 잔류응력 해석에 대한 연구)

  • Ryu, Sae-Hee;Park, Jong-Ha;Lee, Sun-Yong;Lee, Jae-Sung;Lee, Jae-Chul;Ahn, Sung-Hoon;Kim, Dae-Keun;Chae, Jae-Hong;Riu, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.547-551
    • /
    • 2008
  • Crack-free joining of $Si_3N_4\;and\;Al_2O_3$ using 15 layers has been achieved by a unique approach introducing Sialon polytypoids as a functionally graded materials (FGMs) bonding layer. In the past, hot press sintering of multilayered FGMs with 20 layers of thickness $500{\mu}m$ each has been fabricated successfully. In this study, the number of layers for FGM was reduced to 15 layers from 20 layers for optimization. For fabrication, model was hot pressed at 38 MPa while heating up to $1700^{\circ}$, and it was cooled at $2^{\circ}$/min to minimize residual stress during sintering. Initially, FGM with 15 layers had cracks near 90 wt.% 12H / 10 wt.% $Al_2O_3$ and 90 wt.% 12H/10 wt.% $Si_3N_4$ layers. To solve this problem, FEM (finite element method) program based on the maximum tensile stress theory was applied to design optimized FGM layers of crack free joint. The sample is 3-dimensional cylindrical shape where this has been transformed to 2-dimensional axisymmetric mode. Based on the simulation, crack-free FGM sample was obtained by designing axial, hoop and radial stresses less than tensile strength values across all the layers of FGM. Therefore, we were able to predict and prevent the damage by calculating its thermal stress using its elastic modulus and coefficient of thermal expansion. Such analyses are especially useful for FGM samples where the residual stresses are very difficult to measure experimentally.

The Fire Resistant Performance of RC Column with Confined Lateral Reinforcement According to Fire Exposure Condition (횡방향 철근으로 구속된 철근콘크리트 기둥의 화재 노출조건에 따른 내화성능)

  • Choi, Kwang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • When reinforced concrete structures are exposed to fire, their mechanical properties such as compressive strength, elasticity coefficient and rebar yield strength, are degraded. Therefore, the structure's damage assessment is essential in determining whether to dismantle or augment the structure after a fire. In this study, the confinement effect of lateral reinforcement of RC column according to the numbers of fire exposure face and stirrup was verified by fire resistant test with the heating temperatures of $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$. The test results showed that the peak stress decreases and peak strain increases as the temperature is getting higher, also transverse ties are helpful in improving the compressive resistance of concrete subjected to high temperature. Based on the results of this study, the residual stress of confined concrete under thermal damage is higher at the condition of more lateral reinforcement ratio and less fire exposure faces. The decreasing ratio of elastic modulus of more confined and less exposure faces from the relationship of load and displacement was also smaller than that of opposite conditions.

Effect of Long-Term Load on Flexural Crack Widths in FRP-Reinforced Concrete Beams (장기하중이 FRP-보강근 콘크리트 보의 휨균열폭에 미치는 영향)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.694-701
    • /
    • 2018
  • Larger crack widths can be observed more in FRP-reinforced concrete members than in steel-reinforced concrete members as a result of the lower elastic modulus and bond strength of FRP reinforcement. The ACI 440.1R-15 design guide provides equations derived as the maximum bar spacing to control the crack widths indirectly. On the other hand, it is not concerned with long-term effects on the crack control design provisions. This study provides suggestions for how to incorporate time-dependent effects into the crack width equation. The work presented herein includes the results from 8 beams composed of four rectangular and T-shaped FRP-reinforced concrete beams tested for one year under four-point bending. Over a one year period, the crack widths increased as much as 2.6~3.0 times in GFRP and AFRP-reinforced specimens and 1.1~1.4 times in the CFRP-reinforced specimens compared to steel-reinforced specimens. In addition, the average multiple for crack width at one year relative to the instantaneous crack width upon the application of the sustained load was 2.4 in the specimens with a rectangular section and 3.1 in the specimens with a T-shaped section. As a result, it is recommended conservatively that the time-dependent coefficient be taken as 2.5 for the rectangular beams and 3.5 for T-beams.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Development of a Model for Predicting Modulus on Asphalt Pavements Using FWD Deflection Basins (FWD 처짐곡선을 이용한 아스팔트 포장구조체의 탄성계수 추정 모형 개발)

  • Park, Seong Wan;Hwang, Jung Joon;Hwang, Kyu Young;Park, Hee Mun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.797-804
    • /
    • 2006
  • A development of regression model for asphalt concrete pavements using Falling Weight Deflectometer deflections is presented in this paper. A backcalculation program based on layered elastic theory was used to generate the synthetic modulus database, which was used to generate 95% confidence intervals of modulus in each layer. Using deflection basins of FWD data used in developing this procedure were collected from Pavement Management System in flexible pavements. Assumptions of back-calculation are that one is 3 layered flexible pavement structure and another is depth to bedrock is finite. It is found that difference of between 95% confidence intervals and modulus ranges of other papers does not exist. So, the data of 95% confidence intervals in each layer was used to develop multiple regression models. Multiple regression equations of each layer were established by SPSS, package of Statics analysis. These models were proved by regression diagnostics, which include case analysis, multi-collinearity analysis, influence diagnostics and analysis of variance. And these models have higher degree of coefficient of determination than 0.75. So this models were applied to predict modulus of domestic asphalt concrete pavement at FWD field test.

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Analytical Method of Partial Standing Wave-Induced Seabed Response in Finite Soil Thickness under Arbitrary Reflection (임의반사율의 부분중복파동장에서 유한두께를 갖는 해저지반 내 지반응답의 해석법)

  • Lee, Kwang-Ho;Kim, Do-Sam;Kim, Kyu-Han;Kim, Dong-Wook;Shin, Bum-Shick
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.300-313
    • /
    • 2014
  • Most analytical solutions for wave-induced soil response have been mainly developed to investigate the influence of the progressive and standing waves on the seabed response in an infinite seabed. This paper presents a new analytical solution to the governing equations considering the wave-induced soil response for the partial standing wave fields with arbitrary reflectivity in a porous seabed of finite thickness, using the effective stress based on Biot's theory (Biot, 1941) and elastic foundation coupled with linear wave theory. The newly developed solution for wave-seabed interaction in seabed of finite depth has wide applicability as an analytical solutions because it can be easily extended to the previous analytical solutions by varying water depth and reflection ratio. For more realistic wave field, the partial standing waves caused by the breakwaters with arbitrary reflectivity are considered. The analytical solutions was verified by comparing with the previous results for a seabed of infinite thickness under the two-dimensional progressive and standing wave fields derived by Yamamoto et al.(1978) and Tsai & Lee(1994). Based on the analytical solutions derived in this study, the influence of water depth and wave period on the characteristics of the seabed response for the progressive, standing and partial standing wave fields in a seabed of finite thickness were carefully examined. The analytical solution shows that the soil response (including pore pressure, shear stress, horizontal and vertical effective stresses) for a seabed of finite thickness is quite different in an infinite seabed. In particular, this study also found that the wave-induced seabed response under the partial wave conditions was reduced compared with the standing wave fields, and depends on the reflection coefficient.