• Title/Summary/Keyword: elastic buckling strength

Search Result 180, Processing Time 0.028 seconds

Experimental investigation on the seismic performance of cored moment resisting stub columns

  • Hsiao, Po-Chien;Lin, Kun-Sian
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.353-366
    • /
    • 2021
  • Cored moment resisting stub column (CMSC) was previously developed by the features of adopting a core segment which remains mostly elastic and reduced column section (RCS) details around the ends to from a stable hysteretic behavior with large post-yield stiffness and considerable ductility. Several full-scale CMSC components with various length proportions of the RCSs with respect to overall lengths have been experimentally investigated through both far-field and near-fault cyclic loadings followed by fatigue tests. Test results verified that the proposed CMSC provided very ductile hysteretic responses with no strength degradation even beyond the occurrence of the local buckling at the side-segments. The effect of RCS lengths on the seismic performance of the CMSC was verified to relate with the levels of the deformation concentration at the member ends, the local buckling behavior and overall ductility. Estimation equations were established to notionally calculate the first-yield and ultimate strengths of the CMSC and validated by the measured responses. A numerical model of the CMSC was developed to accurately capture the hysteretic performance of the specimens, and was adopted to clarify the effect of the surrounding frame and to perform a parametric study to develop the estimation of the elastic stiffness.

Structural Design of Small Submarine Pressure Hull (소형 잠수함 압력선체의 구조설계)

  • Kim, Heung-Youl;Shin, Yong-Ku;Kim, Soo-Young;Shin, Sung-Chul;Chung, Bo-Young;Jo, Jung-Hwa;Kim, Hyun-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.116-123
    • /
    • 2012
  • This study aims to analyze the strength of pressure hull of a small submarine. The pressure hull of a submarine has to withstand very large differential pressure between hydrostatic pressure in submarine operating depth and atmospheric pressure in inner space of a submarine. To do that, the pressure hull is generally ring-stiffened cylindrical shell under external pressure. In this situation, there are some foreseeable failure modes of the pressure hull such as shell yielding, axisymmetric shell buckling, asymmetric shell buckling, overall buckling and buckling of end closure. We calculated collapse pressures of these failure modes with approximation and empirical formulas. And, to analyze critical buckling pressure, we performed eigenvalue analysis with finite element method tools.

An Approximate Solution for the Local Buckling Coefficient of Pultruded I-Shape Compression Members (펄트루젼 I형 단면 압축재의 국부좌굴계수 계산을 위한 근사식의 개발)

  • Joo H. J.;Jung J. H.;Lee S.;Yoon S. J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.223-227
    • /
    • 2004
  • The pultruded structural shapes are usually composed of thin-walled plate elements. Because the composite material has relatively low elastic moduli, the design of pultruded compression members may not be governed by the material strength limit state but by the stability limit state such as the local buckling or the global buckling. Therefore, the stability limit state must be checked to design pultruded columns. In this research, the local buckling analysis of pultruded I-shape column was conducted for various composite materials using the closed-form solution. To establish the design guidelines for the local buckling of pultruded I-shape compression members, the simplified form of equation to find the local buckling coefficient of pultruded I-shape column was proposed as a function of mechanical properties and the width ratio of plate components using the results obtainde by the closed-form solution. In order to verify the validity of proposed solution, the results obtained by the proposed approximate solution were compared with those of the closed-form solution and the experimental results.

  • PDF

Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web (HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • The flexural behavior of HSB I-girder with a non-slender web attributed to inelastic lateral-torsional buckling under uniform bending was investigated using nonlinear finite element analysis of ABAQUS. The girder was assumed to have a compact or noncompact web in order to prevent premature bend-buckling of the web. The unbraced length of the girder was selected so that inelastic lateral-torsional buckling governs the ultimate flexural strength. The compression flange was also assumed to be either compact or noncompact to prevent local buckling of the elastic flange. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web of I-girder were modeled as thin shell elements. Initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was assumed for steel. After establishing the validity of the present FE analysis by comparing FE results with test results in existing literature, the effects of initial imperfection and residual stress on the inelastic lateral-torsional buckling behavior were analyzed. Finite element analysis results for 96 sections demonstrated that the current inelastic strength equations for the compression flange in AASHTO LTFD can be applied to predict the inelastic lateral torsional buckling strength of homogeneous and hybrid HSB I-girders with a non-slender web.

The multi-axial strength performance of composited structural B-C-W members subjected to shear forces

  • Zhu, Limeng;Zhang, Chunwei;Guan, Xiaoming;Uy, Brian;Sun, Li;Wang, Baolin
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • This paper presents a new method to compute the shear strength of composited structural B-C-W members. These B-C-W members, defined as concrete-filled steel box beams, columns and shear walls, consist of a slender rectangular steel plate box filled with concrete and inserted steel plates connecting the two long-side steel plates. These structural elements are intended to be used in structural members of super-tall buildings and nuclear safety-related structures. The concrete confined by the steel plate acts to be in a multi-axial stressed state: therefore, its shear strength was calculated on the basis of a concrete's failure criterion model. The shear strength of the steel plates on the long sides of the structural element was computed using the von Mises plastic strength theory without taking into account the buckling of the steel plate. The spacing and strength of the inserted plates to induce plate yielding before buckling was determined using elastic plate theory. Therefore, a predictive method to compute the shear strength of composited structural B-C-W members without considering the shear span ratio was obtained. A coefficient considering the influence of the shear span ratio was introduced into the formula to compute the anti-lateral bearing capacity of composited structural B-C-W members. Comparisons were made between the numerical results and the test results along with this method to predict the anti-lateral bearing capacity of concrete-filled steel box walls. Nonlinear static analysis of concrete-filled steel box walls was also conducted by using ABAQUS and the results agreed well with the experimental data.

Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device (T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향)

  • ;;;C. Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

Retrofitting Device to Increase Seismic Resistant Capactiy of Shear Walls (전단벽의 내진보강을 위한 방법에 관한 연구)

  • Hong, Sung-Gul;Lee, Ji-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • The elastic buckling load or strength of a concentrically loaded slender metal column may be increased many times by reinforcing it with an assemblage of pretensioned stays and rigidity connected crossarm members. The complete system is herein referred to as a 'stayed column'. The purpose of the pretensioned stays and crossarm members is to introduce, at several points along the length of the column, restraint against translation and rotation and thereby decrease the effective unsupported buckling length of the column. This paper verifies that pretensioned cable of stayed column is effective for cyclic load and increases strength of shear wall against earthquake by reinforcing side of wall. Design process of stayed column which satisfies demanded capacity and ductility of wall is presented by analyzing result of experiment.

  • PDF

Elastic Shear Buckling Characteristics of Circularly Corrugated Plates (원형 파형 판의 탄성전단좌굴 특성)

  • Han, Taek Hee;Lim, Nam Hyoung;Park, Nam Hoi;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.529-538
    • /
    • 2002
  • Applications of corrugated plates (or folded plates) have been recently increasing due to certain economic and structural advantages. Likewise, applications of corrugated plates has been increasing because they are stronger compared to flat plates. Therefore, specifications of corrugated plates should be determined. There are many design details in almost every specification for flat plates. However, except the bending strength and the normal strength, there are no detailed design guides such as shear strength. Thus, it is difficult for engineers to design structures consisting of corrugated plates. As such, engineers need a guide in designing corrugated plates. Extensive numerical study was conducted in order to identify the relationship between the shear strength and geometric conditions for corrugated plates. An eight-node thin shell element (QSL8) of the commercial program LUSAS (version 13.2) was used. The study was able to come up with a formula that helps determine the shear strength of corrugated plates under various geometric conditions, the size of corrugation, the curvature of corrugation, and the thickness of the corrugated plate. Likewise, corrugated plates were found to have a higher shear buckling strength than flat plates.

Approximate Solution for Finding the Buckling Strength of Orthotropic Rectangular Plates (직교이방성판의 좌굴강도를 구하기 위한 근사식의 개발)

  • J. H. Jung;S. J. Yoon;S. K. You
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.28-38
    • /
    • 2003
  • In this study, the analytical investigation of orthotropic rectangular plate is presented. The loaded edges are assumed to be simply supported and the unloaded edges could have elastically restrained boundary conditions including the extreme boundary condition such as simple, fixed, and free. Using the closed-form solutions, the buckling analyses of orthotropic plate with arbitrary boundary conditions are performed. Based on the data obtained by conducting numerical analysis, the simplified form of equation for finding the buckling coefficient of plate with elastically restrained boundary conditions at the unloaded edges is suggested as a function of aspect ratio, elastic restraint. and material properties of the plate. The results of buckling analyses by closed-form solution and simplified form of solution are compared for various orthotropic material properties. It is confirmed that the difference of results is less than 1.5%.

Buckling Characteristics of Ship Bottom Plate - On the Stiffener Restraint Effects - (선박 선저외판의 좌굴특성에 관한 연구 - 보강재의 구속영향 검토 -)

  • Juh-H. Ham;Ul-N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.130-138
    • /
    • 1994
  • Bottom plates of empty hold are subjected to not only water pressure but also bi-axial inplane loads, specially in the alternate full loading full loading condition of bulk carrier. This kind of plate behaviours is very difficult to be explained and to be estimated using common buckling design guide in the initial design stage of hull structure, therefore, some more concrete studies for this plate structure was performed based on the currently developed buckling estimation formula. In this buckling formula, torsional stiffness effects of edge stiffener are included additionally and effects of elastic buckling strength of plate panel are treated as characteristic value problem. Also considering boundary stiffener effects and inplane and lateral loading, evaluation of bottom plate scantling using this formula, calculated results using various classification regulation of buckling strength and results of first report approach are compared each other and useful guides using developed formula for bottom plate scantling design are discussed.

  • PDF