• Title/Summary/Keyword: elastic behaviors

Search Result 429, Processing Time 0.03 seconds

Optimal Design of the Flexure Mounts for Satellite Camera by Using Design of Experiments (실험계획법을 이용한 인공위성 주반사경 플렉셔 마운트의 최적 설계)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.693-700
    • /
    • 2008
  • The primary mirror system in a satellite camera is an opto-mechanically coupled system for a reason that optical and mechanical behaviors are intricately interactive. In order to enhance the opto-mechanical performance of the primary mirror system, opto-mechanical behaviors should be thoroughly investigated by using various analysis procedures such as elastic, thermo-elastic, optical and eigenvalue analysis. In this paper, optimal design of the bipod flexure mounts for high opto-mechanical performance is performed. Optomechanical performances considered in this paper are RMS wavefront error under the gravity and thermal loading conditions and 1st natural frequency of the mirror system. The procedures of the flexure mounts design based on design of experiments and statistics is as follows. The experiments for opto-mechanical analysis are constructed based on the tables of orthogonal arrays and analysis of each experiment is carried out. In order to deal with the multiple opto-mechanical properties, MADM (Multiple-attribute decision making) is employed. From the analysis results, the critical design variables of the flexure mounts which have dominant influences on opto-mechanical performance are determined through analysis of variance and F-test. The regression model in terms of the critical design variables is constructed based on the response surfaceanalysis. Then the critical design variables are optimized from the regression model by using SQP algorithm. Opto-mechanical performance of the optimal bipod flexure mounts is verified through analysis.

Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact (저속 충격하에서의 금속복합재료의 동적 특성)

  • ;Gamal A. Aggag;K.Takahashi
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study has observed that the dynamic behavior of Metal Matrix Composites (MMCs) in low velocity impact varies with impact velocity. MMCs with 15 fiber volume percent were fabricated by using the squeeze casting method. The AC8A was used as the matrix, and the alumina and the carbon were used as reinforcements. The tensile and vibration tests conducted yielded the yielded the tensile stress and elastic modulus of MMCs The low pass filter and instrumented impact test machine was adopted to study dynamic behaviors of MMCs corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact energy of unreinforced alloy and MM s increased as the impact velocity increased. The increase of crack propagation energy was especially prominent, but the dynamic toughness of each material did not change much. To show the relation between crack initiation energy and dynamic fracture toughness, a simple model was proposed by using the strain energy and stress distribution at notch. The model revealed that crack initiation energy is proportional to the square of dynamic fracture toughness and inversely proportional to elastic modulus.

  • PDF

Effect of Underlying Layer Modeling on Curling Behavior of Concrete Slabs on Grade under Environmental Loads (하부층 모델링에 따른 지반 위 콘크리트 슬래브의 환경하중 하의 컬링 거동 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Yoon, Dong-Joo
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.209-220
    • /
    • 2008
  • This paper presents the differences in the analysis results according to the underlying layer modeling methods when analyzing the curling behaviors of the concrete slabs on grade under environmental loads. The models of the slab on grade system considered in this study included a three-dimensional(3D) model, a model composed of 3D slab and springs for underlying layers, and a model composed of 2D slab and springs for underlying layers. First, when the underlying layer consisted of one layer, the curling behaviors according to the different models were compared. Then, the underlying layers that consisted of two different materials and thicknesses were considered. The results of this study showed that the tensionless spring model for the underlying layer gave very accurate results when the underlying layer consisted of one layer. However, when the underlying layers consisted of two layers, the spring model for the underlying layers could overestimate the displacements and underestimate the maximum stress with a large elastic modulus of upper underlying layer, a small elastic modulus of under underlying layer, and thick underlying layers.

  • PDF

Computational analysis and design formula development for the design of curved plates for ships and offshore structures

  • Kim, Joo-Hyun;Park, Joo-Shin;Lee, Kyung-Hun;Kim, Jeong-Hyeon;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.705-726
    • /
    • 2014
  • In general, cylindrically curved plates are used in ships and offshore structures such as wind towers, spa structures, fore and aft side shell plating, and bilge circle parts in merchant vessels. In a number of studies, it has been shown that curvature increases the buckling strength of a plate under compressive loading, and the ultimate load-carrying capacity is also expected to increase. In the present paper, a series of elastic and elastoplastic large deflection analyses were performed using the commercial finite element analysis program (MSC.NASTRAN/PATRAN) in order to clarify and examine the fundamental buckling and collapse behaviors of curved plates subjected to combined axial compression and lateral pressure. On the basis of the numerical results, the effects of curvature, the magnitude of the initial deflection, the slenderness ratio, and the aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. On the basis of the calculated results, the design formula was developed to predict the buckling and ultimate strengths of curved plates subjected to combined loads in an analytical manner. The buckling strength behaviors were simulated by performing elastic large deflection analyses. The newly developed formulations were applied in order to perform verification analyses for the curved plates by comparing the numerical results, and then, the usefulness of the proposed method was demonstrated.

Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model

  • Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Hussain, Muzamal;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.49-64
    • /
    • 2022
  • In this work, the bending and dynamic behaviors of advanced composite plates resting on variable visco-Pasternak foundations are studied using a simple shear deformation integral plate model. The research is carried out with a view to a three-parameter foundation including the influences of the variable Winkler coefficient, the constant Pasternak coefficient and the damping coefficient of the elastic medium. The present theory uses a displacement field with integral terms instead of derivative terms by including also the shear deformation effect without introducing the shear correction factors. The equations of motion for advanced composite plates are obtained using the Hamilton principle. Analytical solutions for the bending and dynamic analysis are deduced for simply supported plates resting on variable visco-Pasternak foundations. Some numerical results are presented to demonstrate the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic responses of advanced composite plates.

Large Displacement Behaviors of Foam-Insulated Concrete Sandwich Panels Subjected to Uniform Pressure (등분포하중에 종속된 폼내장 콘크리트 샌드위치패널의 유한변위거동)

  • Kang, Jun-Suk;Won, Deok-Hee;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.35-43
    • /
    • 2011
  • This study examined the structural behaviors of foam insulated concrete sandwich panels subjected to uniform pressure. Finite element models were used to simulate the detailed shear resistance of connectors and the nonlinear behaviors of concrete, foam and rebar components. The models were then validated using data from static tests performed at the University of Missouri. Both composite and non-composite action had a significant effect on the response of the foam insulated concrete sandwich panels, indicating that the simulated shear tie resistance should indeed be incorporated in numerical analyses. The modeling approach used here conveniently simulated the structural behaviors during all loading stages (elastic, yielding, ultimate and post-failure) and was compatible with the American Concrete Institute (ACI) Code and existing design practices. The results of this study will therefore provide useful guidelines for the analysis and design of foam insulated sandwich panels under both static and dynamic loadings.

Computer Simulation of Deformation Behavior of the Rubber Diaphragm (고무 다이아프램의 변형거동 전산해석)

  • Cho, Seong-Do-Seong;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.4-11
    • /
    • 2000
  • A rubber diaphragm is a critical element of accumulators. The material of a diaphragm is nitrile rubber so as to recover and adjust the large deformation under external pressure fluctuation. The performance of accumulators is influenced by the deformation behaviors of the diaphragm. A large deformation behavior of the diaphragm has been investigated using the commercial finite element program MARC K7.1. The several elastic moduli have been used in linear analysis and Ogden's coefficients have been used in non-linear analysis. As a result, it has been shown that the deformation behavior with a elastic modulus of $0.3 kg/mm^2$ is similar to the behavior of non-linear analysis. And, the modified diaphragm shape to reduce the stress concentration has been proposed.

  • PDF

Corrosion Characteristics of Ti alloy for Removable Partial Denture (국소의치용 티타늄 합금의 부식 특성)

  • Kim, Jeong-Jae;Kim, Won-Gi
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.237-242
    • /
    • 2014
  • In this study, surface characteristics and corrosion behaviors have been investigated in addition to Zr elements on the low elastic modulus Ti-30Ta alloy. Low elastic modulus Ti-30Ta-xZr(x : 3, 7 and 15 wt %) alloys were prepared by arc melting and then heat treated at $1000^{\circ}C$ for 24 hrs in an argon atmosphere. Microstructures of the alloys were examined by field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). Electrochemical experiments were performed using a conventional three-electrode configuration with a sample working electrode, a high density carbon counter electrode and a saturated calomel reference electrode. According to the result of polarization behavior in the Ti-30Ta-xZr alloys, the current density of homogenized Ti-30Ta-15Zr in the passive region was lower than the other alloys.

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides

  • Wang, Yuewu;Xie, Ke;Fu, Tairan
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.685-698
    • /
    • 2020
  • The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.

Mechanical behavior of crumb rubber concrete under axial compression

  • Ren, Rui;Liang, Jiong-Feng;Liu, Da-wei;Gao, Jin-he;Chen, Lin
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.249-256
    • /
    • 2020
  • This paper aims at investigating the effect of crumb rubber size and content on compressive behaviors of concrete under axial compression. Concrete specimens are designed and produced by replacing natural aggregate with crumb rubber content of 0%, 5%, 10%, 15% and three different sized crumb rubbers (No. 20, No. 40, No. 80 crumb rubber). And the failure mode, compressive strength, elastic modulus, stress-strain curves, peak strain and ultimate strain are experimentally studied. Based on the test results, formulas have been presented to determine the compressive strength, elastic modulus, the relationship between prism compressive strength and cube compressive strength, stress-strain curves and peak strain of crumb rubber concrete (CRC). It is found that the proposed formulas agree well with the test result on the whole, which may be used to practical applications.