• 제목/요약/키워드: elastic analysis

검색결과 4,682건 처리시간 0.032초

Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.623-631
    • /
    • 2017
  • Present paper deals with the temperature-dependent buckling analysis of sandwich nanocomposite plates resting on elastic medium subjected to magnetic field. The lamina layers are reinforced with carbon nanotubes (CNTs) as uniform and functionally graded (FG). The elastic medium is considered as orthotropic Pasternak foundation with considering the effects of thermal loading on the spring and shear constants of medium. Mixture rule is utilized for obtaining the effective material properties of each layer. Adopting the Reddy shear deformation plate theory, the governing equations are derived based on energy method and Hamilton's principle. The buckling load of the structure is calculated with the Navier's method for the simply supported sandwich nanocomposite plates. Parametric study is conducted on the combined effects of the volume percent and distribution types of the CNTs, temperature change, elastic medium, magnetic field and geometrical parameters of the plates on the buckling load of the sandwich structure. The results show that FGX distribution of the CNTs leads to higher stiffness and consequently higher buckling load. In addition, considering the magnetic field increases the buckling load of the sandwich nanocomposite plate.

Undrained solution for cavity expansion in strength degradation and tresca soils

  • Li, Chao;Zou, Jin-feng;Sheng, Yu-ming
    • Geomechanics and Engineering
    • /
    • 제21권6호
    • /
    • pp.527-536
    • /
    • 2020
  • An elastic-plastic solution for cavity expansion problem considering strength degradation, undrained condition and initial anisotropic in-situ stress is established based on the Tresca yield criterion and cavity expansion theory. Assumptions of large-strain for plastic region and small-strain for elastic region are adopted, respectively. The initial in-situ stress state of natural soil mass may be anisotropic caused by consolidation history, and the strength degradation of soil mass is caused by structural damage of soil mass in the process of loading analysis (cavity expansion process). Finally, the published solutions are conducted to verify the suitability of this elastic-plastic solution, and the parametric studies are investigated in order to the significance of this study for in-situ soil test.

Elastic-plastic analysis of the J integral for repaired cracks in plates

  • Salem, Mokadem;Bouiadjra, Belabbes Bachir;Mechab, Belaid;Kaddouri, Khacem
    • Advances in materials Research
    • /
    • 제4권2호
    • /
    • pp.87-96
    • /
    • 2015
  • In this paper, three-dimensional finite element method is used to analyze the J integral for repaired cracks in plates with bonded composite patch and stiffeners. For elastic the effect of cracks, the thickness of the patch ($e_r$) and properties of the patch are presented for calculating the J integral. For elastic-plastic a several calculations have been realized to extract the plasticized elements around the crack tip of repaired and un-repaired crack. The obtained results show that the presence of the composite patch and stiffener reduces considerably the size of the plastic zone ahead of the crack. The effects of crack size and the inter-distance of repaired cracks were analysed.

3차원 정적 집중하중을 받는 복합 탄성 케이블의 정적 해석 (Analytic Investigation of Multi-Component Elastic Cables under 3-D Concentrated Static Loads)

  • 최윤락
    • 한국해양공학회지
    • /
    • 제28권3호
    • /
    • pp.193-198
    • /
    • 2014
  • An elastic cable with piecewise constant properties under the action of concentrated static loads is studied analytically. Analytic solutions for catenary cables are combined at the discontinuous points caused by the discontinuous elastic properties or concentrated loads. The application of the boundary conditions at both ends of the multi-component cable results in three algebraic non-linear equations for three unknown parameters, which are determined numerically. The solutions for the shape, tension, elongation, and cross-sectional contraction of the cable are expressed in closed forms. Some examples are given for cases of two- and three-dimensional loads.

이종재료 금속조인트의 굽힘에 의한 잔류응력 해석 (Residual Stress Analysis in Bi-material Metal Joint under Bending Moment by Finite Element Method)

  • 백태현;정걸;박태근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.448-451
    • /
    • 2005
  • It was observed that after unloading or removal of the load from the specimen subjected to bending stress, partial or full elastic spring back occurred and considerable stresses have resulted while plastic deformation was considered. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, it was used as the main tool to analyze elastic and plastic deformations of hi-material metal joint. In the case of elastic deformations, the results were comparable to the theoretical data. Plastic deformations and residual stresses of hi-material metal joint under bending moment were obtained by ABAQUS; where the theory needs to be studied and improved further to verify the results.

  • PDF

Comparison of Slowness Profiles of Lamb Wave with Elastic Moduli and Crystal Structure in Single Crystalline Silicon Wafers

  • Min, Youngjae;Yun, Gyeongwon;Kim, Kyung-Min;Roh, Yuji;Kim, Young H.
    • 비파괴검사학회지
    • /
    • 제36권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Single crystalline silicon wafers having (100), (110), and (111) directions are employed as specimens for obtaining slowness profiles. Leaky Lamb waves (LLW) from immersed wafers were detected by varying the incident angles of the specimens and rotating the specimens. From an analysis of LLW signals for different propagation directions and phase velocities of each specimen, slowness profiles were obtained, which showed a unique symmetry with different symmetric axes. Slowness profiles were compared with elastic moduli of each wafer. They showed the same symmetries as crystal structures. In addition, slowness profiles showed expected patterns and values that can be inferred from elastic moduli. This implies that slowness profiles can be used to examine crystal structures of anisotropic solids.

Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams

  • Lal, Achchhe;Markad, Kanif
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.501-514
    • /
    • 2018
  • The paper presents the thermo-mechanically induced non-linear response of multiwall carbon nanotube reinforced laminated composite beam (MWCNTRCB) supported by elastic foundation using higher order shear deformation theory and von-Karman non-linear kinematics. The elastic properties of MWCNT reinforced composites are evaluated using Halpin-Tsai model by considering MWCNT reinforced polymer matrix as new matrix by dispersing in it and then reinforced with E-glass fiber in an orthotropic manner. The laminated beam is supported by Pasternak elastic foundation with Winkler cubic nonlinearity. A generalized static analysis is formulated using finite element method (FEM) through principle of minimum potential energy approach.

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

초음파의 에너지속도와 위상속도의 주행시간 동시성과 이방성 재료의 탄성계수 결정 (Equivalence of the times of flight by ultrasonic energy and phase velocities and determination of the elastic constants of anisotropic materials)

  • 정현조
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.95-103
    • /
    • 1994
  • The purpose of this paper is to provide the experimenters who use the oblique incidence ultrasonic method for anisotropic elastic constants measurement eith some useful relations. In particular, the equivalence of the times of flight by the energy ad phase velocities, which is key to the oblique incidence method, is proved explicitly. This equivalence greatly simplifies the analysis of immersion measurement results. In oredr to correctly measure the transit time of an immersed sample using the oblique incidence, the receiving transducer should be shifted laterally, and an expression in given for this shift. A method for determining all nine elastic constants of an orthotropic material is briefly described and the measurement results are listed for SiC particulate reinforced A1 matrix composites.

  • PDF