• Title/Summary/Keyword: ejection fraction (EF)

Search Result 95, Processing Time 0.018 seconds

Precision Cardiology: Phenotype-targeted Therapies for HFmrEF and HFpEF

  • Giuseppe M.C. Rosano;Cristiana Vitale;Ilaria Spoletini
    • International Journal of Heart Failure
    • /
    • v.6 no.2
    • /
    • pp.47-55
    • /
    • 2024
  • Heart failure with mid-range ejection fraction (HFmrEF) and preserved ejection fraction (HFpEF) represent over half of heart failure cases but lack proven effective therapies beyond sodium-glucose cotransporter 2 inhibitor and diuretics. HFmrEF and HFpEF are heterogeneous conditions requiring precision phenotyping to enable tailored therapies. This review covers concepts on precision medicine approaches for HFmrEF and HFpEF. Areas discussed include HFmrEF mechanisms, anti-inflammatory and antifibrotic treatments for obesity-related HFpEF, If inhibition for HFpEF with atrial fibrillation, and mineralocorticoid receptor antagonism for chronic kidney disease-HFpEF. Incorporating precision phenotyping and matched interventions in HFmrEF and HFpEF trials will further advance therapy compared to blanket approaches.

Sudden Death and Ventricular Arrhythmias in Heart Failure With Preserved Ejection Fraction

  • Jae Hyung Cho
    • Korean Circulation Journal
    • /
    • v.52 no.4
    • /
    • pp.251-264
    • /
    • 2022
  • Heart failure with preserved ejection fraction (HFpEF) accounts for approximately half of all heart failure (HF) cases. The prevalence of HFpEF is increasing due to an aging population with hypertension, diabetes mellitus, and obesity. HFpEF remains a challenging clinical entity due to a lack of effective treatment options. Traditional HF medications have not been shown to reduce mortality of patients with HFpEF, and an implantable cardioverter-defibrillator is not indicated due to normal ejection fraction. Sudden death is the most common mode of death in patients with HFpEF; however, the underlying mechanisms of sudden death are not fully elucidated. Although ventricular arrhythmias are responsible for the majority of sudden deaths in general, their contribution to sudden deaths in HFpEF patients is likely less significant. The mechanisms of ventricular arrhythmias in HFpEF are 1) reduced conduction velocity due to ventricular hypertrophy, 2) delayed repolarization due to potassium current down-regulation, 3) calcium leakage due to altered excitation-contraction coupling, and 4) increased ventricular fibrosis caused by systemic inflammation. Hypertension and subsequent ventricular hypertrophy reduce the conduction velocity in HFpEF hearts via heterogeneous distribution of connexin 43. Delayed repolarization caused by potassium current down-regulation in HFpEF hearts provides a window for early afterdepolarization to trigger ventricular arrhythmias. Altered excitation-contraction coupling in HFpEF can cause calcium to leak and trigger delayed afterdepolarization. Increased systemic inflammation and subsequent ventricular fibrosis provide substrates for re-entry. Further research is warranted to investigate the detailed mechanisms of ventricular arrhythmias in HFpEF.

Medical Management of Patients With Heart Failure and Reduced Ejection Fraction

  • Barry Greenberg
    • Korean Circulation Journal
    • /
    • v.52 no.3
    • /
    • pp.173-197
    • /
    • 2022
  • Treatment options for patients with heart failure (HF) with reduced ejection fraction (HFrEF) have expanded considerably over the past few decades. Whereas neurohormonal modulation remains central to the management of patients with HFrEF, other pathways have been targeted with drugs that have novel mechanisms of action. The angiotensin receptor-neprilysin inhibitors (ARNIs) which enhance levels of compensatory molecules such as the natriuretic peptides while simultaneously providing angiotensin receptor blockade have emerged as the preferred strategy for inhibiting the renin angiotensin system. Sodium glucose cotransporter 2 (SGLT2) inhibitors which were developed as hypoglycemic agents have been shown to improve outcomes in patients with HF regardless of their diabetic status. These agents along with beta blockers and mineralocorticoid receptor antagonists are the core medical therapies for patients with HFrEF. Additional approaches using ivabradine to slow heart rate in patients with sinus rhythm, the hydralazine/isosorbide dinitrate combination to unload the heart, digoxin to provide inotropic support and vericiguat to augment cyclic guanosine monophosphate production have been shown in well-designed trials to have beneficial effects in the HFrEF population and are used as adjuncts to the core therapies in selected patients. This review provides an overview of the medical management of patients with HFrEF with focus on the major developments that have taken place in the field. It offers prospective of how these drugs should be employed in clinical practice and also a glimpse into some strategies that may prove to be useful in the future.

Beta Blockers in Contemporary Cardiology: Is It Better to Cast Them Out?

  • Javaid Ahmad Dar;John Roshan Jacob
    • Korean Circulation Journal
    • /
    • v.54 no.4
    • /
    • pp.165-171
    • /
    • 2024
  • Beta blockers are one of the commonest prescription drugs in medicine and they have been thought to revolutionize the treatment of heart failure (HF) with reduced ejection fraction (HFrEF) in the last century. In addition to HFrEF, they are prescribed for a variety of diseases in cardiology from hypertension to HF, angina, and stable coronary artery disease (CAD). The increased prescription of beta blockers in conditions like HF with preserved ejection fraction (HFpEF), and stable CAD may be doing more harm than good as per the data we have so far. The available data shows that beta blockers are associated with increased stroke risk and atrial fibrillation (AF) in hypertension and in patients with HFpEF, they have been associated with decreased exercise capacity. In patients with stable CAD and patients with myocardial infarction with normal systolic functions, beta blockers don't offer any mortality benefit. In this article, we critically review the common indications and the uses of beta blockers in patients with HFpEF, CAD, hypertension and AF and we propose that beta blockers are overprescribed under the shadow of their beneficial effects in patients with HFrEF.

Heart Failure With Preserved Ejection Fraction and Frailty: From Young to Superaged Coexisting HFpEF and Frailty

  • Amina Rakisheva;Anzhela Soloveva;Anastasia Shchendrygina;Ilya Giverts
    • International Journal of Heart Failure
    • /
    • v.6 no.3
    • /
    • pp.93-106
    • /
    • 2024
  • Being commonly diagnosed in elderly women and associated with comorbidities as well as ageing-related cardio-vascular changes, heart failure with preserved ejection fraction (HFpEF) has been recently considered as a distinct cardiogeriatric syndrome. Frailty is another frequent geriatric syndrome. HFpEF and frailty share common underlying mechanisms, often co-exist, and represent each other's risk factors. A threshold of 65 years old is usually used to screen patients for both frailty and HFpEF in research and clinical settings. However, both HFpEF and frailty are very heterogenous conditions that may develop at younger ages. In this review we aim to provide a broader overview on the coexistence of HFpEF and frailty throughout the lifetime. We hypothesize that HFpEF and frailty patients' profiles (young, elderly, superaged) represent a continuum of the common ageing process modified by cumulative exposure to risk factors resulting to a presentation of HFpEF and frailty at different ages. We believe, that suggested approach might stimulate assessment of frailty in HFpEF assessment and vice versa regardless of age and early implementation of targeted interventions. Future studies of pathophysiology, clinical features, and outcomes of frailty in HFpEF by age are needed.

In Vivo Estimation of Emax and Ejection Fraction Using Dynamic Spatial Reconstructor (역동적 삼차원 재구성기로 측정한 In Vivo 상태의 좌심실의 Emax 와 박출계수)

  • 김광호
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.223-230
    • /
    • 1988
  • Emax, end-systolic pressure-volume relationship, has been established as a new concept which can be representative of ventricular contractility itself since 1970s. Comparing to ejection fraction[EF], Emax is independent of preload and afterload. However Emax has not been proved precisely in non-thoracotomized condition because current methods have limitation in measuring ventricular chamber volume accurately in in viva state. The Dynamic Spatial Reconstructor[DSR], high speed computerized tomography, can measure ventricular chamber volume accurately throughout cardiac cycle in non-thoracotomized state. So Emax and EF of the left ventricle was tried to measure precisely in in vivo condition with DSR. Emax was compared to EF to estimate its ability to evaluate ventricular contractility. 5 mongrel dogs, weighing 15-16kg, were used for measuring Emax and EF of the left ventricle in 3 or 4 different loading conditions using DSR. Emax value in 5 dogs was from 2.62 to 10.49. Each dog has one Emax value regardless of loading conditions. However EF in 5 dogs varies depending on loading conditions. The conclusions are that Emax is useful in in viva state and EF varies depending on loading conditions. So Emax should be tried to use in clinical situation rather than EF because it is always representative of contractility itself regardless loading conditions in in viva state.

  • PDF

A Case of Pleural Effusion in a Patient with Heart Failure with Preserved Ejection Fraction Improved by A Combined Korean-Western Medicine Approach (좌심실 수축 기능 보전 심부전증으로 인한 흉수에 대한 한양방 복합치료 치험 1례)

  • Ha, Won Jung;Seo, Yuna;Lee, Young seon;Cho, Ki-Ho;Mun, Sang-Kwan;Jung, Woo-Sang;Kwon, Seungwon
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • ■ Background Heart Failure with Preserved Ejection Fraction(HFpEF) is a heart failure that appears to have normal contraction function. In the case of HFpEF, no pharmacological therapy has been found to improve clinical prognosis, so it should be approached as an symptomatic treatment, therefore alternatives are needed due to concerns over adverse effects such as electrolyte imbalance caused by medication. ■ Case report A 81 year old female patient with Heart Failure with Preserved Ejection Fraction(HFpEF) patient complained dyspnea. Herbal prescription Mokbanggi-tang and Oryeongsan was administered on 6th day and 8th day respectively since the symptoms started. The NYHA Classification and Chest X-ray had been evaluated during the treatment period. Until the 7th day, the patient was classified as Class II, and when discharged from the hospital on the 28th day, it gradually improved and was classified as Class II. Chest X-Ray took on 2nd day showed pleural effusion and it was aggravated until 13th day. Follow up Chest X-Ray showed improving state of pleural effusion from 20th day and gradually got better. Mokbanggi-tang treatment continued for 52 days and stopped on 58th day. After Mokbanggi-tang treatment ended, only Oryeongsan treatment was maintained. ■ Conclusion The present case report suggests that Korean-Western medicine approach with Mokbangki-tang and Oryeongsan might be effective to pleural effusion and heart failure symptoms such as poor physical activity shown in a NYHA Classification. This shows that Mokbanggi-tang and Oryeongsan can be a therapeutic option as a treatment for patient with Heart Failure with Preserved Ejection Fraction(HFpEF).

Korean Society of Heart Failure Guidelines for the Management of Heart Failure: Definition and Diagnosis

  • Jae Yeong Cho ;Dong-Hyuk Cho;Jong-Chan Youn;Darae Kim;Sang Min Park;Mi-Hyang Jung;Junho Hyun;Jimi Choi;Hyun-Jai Cho;Seong-Mi Park;Jin-Oh Choi;Wook-Jin Chung;Byung-Su Yoo;Seok-Min Kang;Committee of Clinical Practice Guidelines, Korean Society of Heart Failure
    • Korean Circulation Journal
    • /
    • v.53 no.4
    • /
    • pp.195-216
    • /
    • 2023
  • The Korean Society of Heart Failure guidelines aim to provide physicians with evidence-based recommendations for diagnosing and managing patients with heart failure (HF). In Korea, the prevalence of HF has been rapidly increasing in the last 10 years. HF has recently been classified into HF with reduced ejection fraction (EF), HF with mildly reduced EF, and HF with preserved EF (HFpEF). Moreover, the availability of newer therapeutic agents has led to an increased emphasis on the appropriate diagnosis of HFpEF. Accordingly, this part of the guidelines will mainly cover the definition, epidemiology, and diagnosis of HF.

Left Ventricular Ejection Fraction Determined by Gated Tl-201 Perfusion SPECT and Quantitative Software (게이트 Tl-201 관류 SPECT와 Cedars 소프트웨어를 이용하여 측정한 좌심실 구혈률)

  • Hyun, In-Young;Kim, Sung-Eun;Seo, Jeong-Kee;Hong, Eui-Soo;Kwan, Jun;Park, Keum-Soo;Lee, Woo-Hyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.3
    • /
    • pp.222-227
    • /
    • 2000
  • Purpose: We compared estimates of ejection fraction (EF) determined by gated Tl-201 perfusion SPECT (g-Tl-SPECT) with those by gated blood pool (GBP) scan. Materials and Methods: Eighteen subjects underwent g-Tl-SPECT and GBP scan. After reconstruction of g-Tl-SPECT, we measured EF with Cedars software. The comparison of the EF with g-Tl-SPECT and GBP scan was assessed by correlation analysis and Bland Altman plot. Results: The estimates of EF were significantly different (p<0.05) with g-Tl-SPECT ($40%{\pm}14%$) and GBP scan ($43%{\pm}14%$). There was an excellent correlation of EF between g-Tl-SPECT and GBP scan (r=0.94, p<0.001). The mean difference of EF between GBP scan and g-Tl-SPECT was +3.2% Ninety-five percent limits of agreement were ${\pm}9.8%$. EF between g-Tl-SPECT and GBP scan were in poor agreement. Conclusion: The estimates of EF by g-Tl-SPECT was well correlated with those by GBP scan. However, EF of g-Tl-SPECT doesn't agree with EF of GBP scan. EF of g-Tl-SPECT can't be used interchangeably with EF of GBP scan.

  • PDF

Clinical and Imaging Parameters Associated With Impaired Kidney Function in Patients With Acute Decompensated Heart Failure With Reduced Ejection Fraction

  • In-Jeong Cho;Sang-Eun Lee;Dong-Hyeok Kim;Wook Bum Pyun
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.4
    • /
    • pp.169-177
    • /
    • 2023
  • BACKGROUND: Acute worsening of cardiac function frequently leads to kidney dysfunction. This study aimed to identify clinical and imaging parameters associated with impaired kidney function in patients with acute decompensated heart failure with reduced ejection fraction (HFrEF). METHODS: Data from 131 patients hospitalized with acute decompensated HFrEF (left ventricular ejection fraction, < 40%) were analyzed. Patients were divided into two groups according to the glomerular filtration rate (GFR) at admission (those with preserved kidney function [GFR ≥ 60 mL/min/1.73 m2] and those with reduced kidney function [GFR < 60 mL/min/1.73 m2]). Various echocardiographic parameters and perirenal fat thicknesses were assessed by computed tomography. RESULTS: There were 71 patients with preserved kidney function and 60 patients with reduced kidney function. Increased age (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.04-1.12; p = 0.005), increased log N-terminal pro b-type natriuretic peptide (OR, 1.74; 95% CI, 1.14-2.66; p = 0.010), and increased perirenal fat thickness (OR, 1.19; 95% CI, 1.10-1.29; p < 0.001) were independently associated with reduced kidney function, even after adjusting for variable clinical and echocardiographic parameters. The optimal average perirenal fat thickness cut-off value of > 12 mm had a sensitivity of 55% and specificity of 83% for kidney dysfunction prediction. CONCLUSIONS: Thick perirenal fat was independently associated with impaired kidney function in patients hospitalized for acute decompensated HFrEF. Measurement of perirenal fat thickness may be a promising imaging marker for the detection of HFrEF patients who are more susceptible to kidney dysfunction.