• 제목/요약/키워드: effluent water

검색결과 1,209건 처리시간 0.027초

전자선을 이용한 하수처리장 방류수내 대장균군 살균 (Disinfection of Total Coliforms in Sewage Treatment Effluent using Electron Beam)

  • 김유리;한범수;김진규;강호
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.376-381
    • /
    • 2004
  • The use of electron beam irradiation was investigated to disinfect total coliforms in the secondary sewage treatment effluent. Unchlorinated secondary effluent was irradiated at different dose of 0.2~1.0 kGy by 1 MeV, ELV-4 Model electron beam accelerator. It is interesting to note that a 100 % reduction in total coliforms and total colonies were achieved until a dose of approximately 0.8 kGy. Even at low dose of 0.2 kGy, the total coliforms and total colonies were successfully inactivated to the level of satisfying the new effluent discharge guideline. Besides disinfection of total coliforms, approximately a 50% removal in biochemical oxygen demand was pronounced at a dose of 0.2 kGy. More than 20 % removal in suspended solids and turbidity was also observed at a dose of 1.0 kGy. The application of electron beam irradiation appeared to be one of options to reuse sewage treatment effluent as agricultural or industrial water.

온수방류의 귀환에 방류구 길이의 영향 (Effect of Length of Outfall Structure on Reattachment of Thermal Discharge)

  • 윤태훈;육운수;이용균
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.123-134
    • /
    • 1994
  • 돌출방류수로에 의하여 동일한 수심의 개수로에 방류되는 부력방류에 의한 연안귀환이 수리실험에 의하여 해석되었다. 부력방류는 온수를 방류하여 발생된다. 돌출방류로 인하여 부력류 하류에 형성되는 재순환영역의 크기는 비돌출방류에서 보다 증가하는 경향을 갖으나 황온도분포는 균일하고 횡단면 최대온도는 감소를 나타낸다. 높은 부력흐름율과는 반대로 낮은 부력흐름율 조건에서 단면평균온도 또는 열흐름율은 돌출길이의 영향이 무시할 정도이다. 비돌출의 경우에는 연안귀환에 유속비가 지배적인 매개변수이었으나 돌출방류의 경우에는 유속비와 후르드수가 다같이 지배적인 인자로 나타났다.

  • PDF

수질유해물질의 지정 및 배출허용기준 설정 시 고려해야 하는 복합적 요인에 대한 고찰: 위해성 저감을 중심으로 (The Various Factors which Should Be Considered in Classifying Toxic Substances in Water and Deriving Their Effluent Limits: Focusing on the Reduction of Risk)

  • 배효관;정윤철;양형재;김재훈;이현동;정진영
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.766-775
    • /
    • 2007
  • The use of toxic chemicals was extended as the industry in Korea has grown dramatically during the last three decades. However, list of toxic substances and limit concentrations in the water environment are not consistent within management of ambient water, drinking water and industrial effluent. This article suggests the systematic framework to classify toxic substances in the water environment and deriving their effluent limits. The most important factor for decision-making to classify toxic substances is whether their concentrations in the water environment are higher than the reference concentrations, estimated by considering human health risk and ecological risk. Using a risk-based reference concentration, the ambient water quality criterion, it is possible to derive the regulatory limit concentrations of toxic substances in drinking water and in industrial effluent. The goal concentrations in the effluent, which guarantee the human and ecological safety, should be determined with scientific investigation, balancing environmental benefit and economical effect, considering availability of treatment technology and identifying characteristics of wastewater from different industries.

인공습지의 농촌지역 오수정화시설에 적용가능성 연구 (Feasibility Study of Constructed Wetland for the Wastewater Treatment in Rural Area)

  • 윤춘경;권순국;권태영
    • 한국농공학회지
    • /
    • 제40권3호
    • /
    • pp.83-92
    • /
    • 1998
  • Field experiment was performed from August 1996 to January 1998 to examine the applicability of constructed wetland system for wastewater treatment in rural area. The pilot plant was installed in Kon-Kuk University and the school building septic tank effluent was used as an influent to the treatment basin. Hydraulic loading rate was about 0.1 6$0.16^3/m^2$ day and theoretical detention time in the system was 1.38 days. The treatment basin was composed of sand and reed. The influent DO concentration was low and many cases close to zero, but effluent concentration was higher than the influent which implies that oxygen was supplied naturally. The average concentration of influent BOD was 126mg/L, and with average removal rate of 69 % the average effluent concentration was 4Omg/L which satisfied the effluent water quality standard for the system of interest. The average influent concentration of COD was 2Olmg/L and average effluent concentration was 75mg/L with average removal rate of 60%. The performance of BOD and COD tends to deteriorate in the low temperature, and appropriate action needs to be taken during the cold winter time for stable operation. The average influent concentration of SS was 5Omg/L, and effluent was 1 1mg/L with average removal rate of 76% which satisfied the effluent water quality standard for the system of interest. The results for the regulated components, SOD and SS, from the experiment showed that constructed wetland system can meet the effluent water quality standards. The average influent concentration of total phosphorus was 25.6mg/L and average effluent concentration was 7.8mg/L with average removal rate of 63%. Not like the performance of the above components, average nitrogen removal rate was only 11.2% which is not satisfactory. Although, nitrogen is not regulated at this moment, it can cause many environmental problems including eutrophication. Therefore, nitrogen removal efficiency should be improved for actual application. From the result of the field experiment, constructed wetland system was thought to be an appropriate alternative for wastewater treatment in rural area.

  • PDF

수계의 비점오염원 관리 - 대청호를 중심으로 (Management of Nonpoint Sources in Watershed - with reference to Daechong Reservoir in Korea)

  • 이종호
    • 환경영향평가
    • /
    • 제9권3호
    • /
    • pp.163-176
    • /
    • 2000
  • The purpose of this study is to analyze the pollutant loads and its distribution, and to suggest the management of nonpoint sources in Daechong Reservoir. The loads from point and nonpoint sources such as population, industry, livestock and land use were calculated per stream or river with topography(1:25,000) of the watershed of Daechong Reservoir. The generating pollutant loads were obtained through multiplication of pollutant sources by generating pollutant quantity per unit pollutant source. The effluent point sources loads is defined as loads from wastewater treatment facilities such as domestic, industrial and livestock wastewater treatment facilities, which were calculated through multiplication of effluent flowrates by water quality constituents concentration. Untreated point sources loads were estimated to be 35 % of total point sources loads. The effluent nonpoint sources pollutant loads were obtained through the multiplication of generating nonpoint sources loads by effluent ratios based on previous studies. The effluent nonpoint sources loads have the ratio of 26.2% of total BOD effluent loadings, 20.1% of total T-N effluent loadings, and 10.5% of total T-P effluent loadings. For the reduction of nonpoint sources loads in Daechong Reservoir, silviculture, artificial wet land, and grassed waterways could be applied. And untreated livestock waste scattered can result in nonpoint loadings, so required the livestock wastes treatment facilities and purifying facilities together with the management of shed, pasture, livestock waste storage site and composting site. Finally, remote sensing and GIS should be applied to the identification of distribution of water quality, watershed, the location and scale of nonpoint sources, effluent process during rainfall, for more detailed analysis of nonpoint sources.

  • PDF

하수처리 방류 소하천내 퇴적물로부터의 박테리아 유출 플럭스모델 비교 (A Test of Two Models for the Bacteria Flux across the Sediment/Water Interface in an Effluent-dominated Stream)

  • 안종호
    • 상하수도학회지
    • /
    • 제24권2호
    • /
    • pp.165-172
    • /
    • 2010
  • Treated sewage could enable growth by providing key nutrients or seeding the sediments with enterococci strains that can grow in the environment. This study is to test the hypothesis that the flux of bacteria into the water column is rate-limited by the transfer of bacteria across the sediment/water interface. Two conceptual models are derived for the transfer of bacteria to the water column from the sediment/water interface: convective diffusion of isolated bacteria and resuspension of particle-associated bacteria. The model predictions are directly tested together with field measurements of bacteria and sediment in an effluent-dominated stream where high concentrations of enterococci in this stream originate primarily from growth of the bacteria in stream sediments. The results reveal that high concentrations of enterococci in this stream are transported primarily by resuspension of particle-associated bacteria accumulated at the sediment/water interface, either in the form of bacterial aggregates or in the form of inorganic particles.

멀티 플라즈마 공정을 이용한 하수 미생물의 불활성화 (Inactivation of Sewage Microorganisms using Multi-Plasma Process)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제23권5호
    • /
    • pp.985-993
    • /
    • 2014
  • For the field application of dielectric barrier discharge plasma reactor, a multi-plasma reactor was investigated for the inactivation of microorganisms in sewage. We also considered the possibility of degradation of non-biodegradable matter ($UV_{254}$) and total organic carbon (TOC) in sewage. The multi-plasma reactor in this study was divided into high voltage neon transformers, gas supply unit and three plasma modules (consist of discharge, ground electrode and quartz dielectric tube). The experimental results showed that the inactivation of microorganisms with treated water type ranked in the following order: distilled water > synthetic sewage effluent >> real sewage effluent. The dissolved various components in the real sewage effluent highly influenced the performance of the inactivation of microorganisms. After continuous plasma treatment for 10 min at 180 V, residual microorganisms appeared below 2 log and $UV_{254}$ absorbance (showing a non-biodegradable substance in water) and TOC removal rate were 27.5% and 8.5%, respectively. Therefore, when the sewage effluent is treated with plasma, it can be expected the inactivation of microorganisms and additional improvement of water quality. It was observed that the $NH_4{^+}$-N and $PO{_4}^{3-}$-P concentrations of sewage was kept at the constant plasma discharging for 30 min. On the other hand, $NO_3{^-}$-N concentration was increased with proceeding of the plasma discharge.

감마선 처리를 이용한 고무공장 폐수의 생물독성 저감 (Toxicity Reduction of Wastewater from a Rubber Products Manufacturing Factory by Gamma-ray Treatment)

  • 박은주;조훈제;조기종;김정규;정진호
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.913-918
    • /
    • 2006
  • Both raw wastewater and effluent from a rubber products manufacturing factory were found to be toxic to Daphnia magna though the effluent satisfied current water quality standards. Thus, in order to reduce toxicity, advanced oxidation processes (AOPs) such as gamma-ray (${\gamma}-ray$) treatment and ozonation ($O_3$) were applied. A combined ${\gamma}-rays/O_3$ treatment at 20 kGy after coagulation significantly reduced toxicity of raw wastewater, changing 48-h toxic unit (TU) value from 201.21 to 23.92. However, toxicity of treated water was higher than that of effluent (TU = 12.15). This shows limitation of gamma-ray treatment to remove toxicity of raw wastewater. In case of effluent, the combined ${\gamma}-rays/O_3$ treatment at 20 kGy efficiently decomposed toxic compounds down to non toxic level. This work strongly supports the necessity of toxicity reduction evaluation as well as toxicity-based effluent management.

알루미늄 가공 공장 배출 방류수의 독성 원인물질 탐색 (Application of Toxicity Identification Evaluation Procedures for Toxic Effluents from the Aluminum Rolling Industry)

  • 나진성;이지호;김기태
    • 한국환경보건학회지
    • /
    • 제41권5호
    • /
    • pp.305-313
    • /
    • 2015
  • Objectives: The objective of this study is to identify toxicants causing acute toxicity in effluents from the aluminum rolling industry that violate the discharge limits in Korea. Methods: Whole effluent toxicity tests (WET) were conducted on effluent discharged from the aluminum rolling industry following the US EPA WET test methods. We collected effluent samples three times and evaluated acute toxicity by using Daphnia magna. We employed toxicity identification evaluation (TIE) procedures to identify toxicants causing toxicity in the effluent. Results: No specific chemical groups were identified in the seven different manipulations applied to the of wastewater effluent samples showing 1.3 toxic units (TU) according to the TIE phase I procedures. Water quality parameters for water hardness, electric conductivity and heavy metals (Mn) were 4,322 mg/l as $CaCO_3$, 11.39 mS/cm, and $5,551{\mu}g/l$, respectively. Considering water hardness and reference toxicity, high concentrations of Mn can be disqualified from the causative toxicants. Consequently, high ionic concentrations of $Na^+$(1,648 mg/l), $Ca^{2+}$(1,048 mg/l), $Mg^{2+}$(1,428 mg/l) and $SO_4{^{2-}}$(7,472 mg/l) were identified to be causative toxicants. Water hardness and electric conductivity exceed the $EC_{50}$ value obtained by biological toxicity tests using Daphnia magna. Conclusion: According to TIE procedures, high salt concentration is determined to be a major toxicant in the effluent of agro-industrial wastewater treatment plants receiving wastewater from the aluminum rolling industry.

환경기초시설의 인 기준 강화에 따른 팔당호 유입 수계의 수질개선 효과분석 (Study on the Improvement of Water Quality by the strengthening of T-P effluent standard for Environmental Facilities in Paldang Basin)

  • 정원구;한영한;임재명
    • 산업기술연구
    • /
    • 제30권B호
    • /
    • pp.125-135
    • /
    • 2010
  • The influences on water quality of each river by effluents from environmental facilities $located^{*}$ in 14 unit watersheds of North- and South-Han River, and Gyungan-cheon were analyzed. Also, the water quality modeling for study area was carried out to analyze the improvement effect of water quality by the strengthening of T-P effluent standard of environmental facilities. For the calibration and verification of model, water quality data and effluent loading calculated for 2006 were used. Data of low water period were used for calibration, and normal water period for verification. The results of calibration and verification were well matched with the real water quality dataset of revers. Also, the validity of the results were estimated using RI (Reliability Index) method. When the T-P effluent standards for environmental facilities were strengthened, T-P concentrations were predicted to improve from $0.025mg/{\ell}$ to $0.023mg/{\ell}$ in the outlet location of North-Han River, from $0.056mg/{\ell}$ to $0.040mg/{\ell}$ for South-Han River,and from $0.233mg/{\ell}$ to $0.146mg/{\ell}$ for Gyungan-cheon. Also, the T-P concentrations of tributaries including Jojong-cheon, Dal-cheong, Sumgang, Chungmi-cheon, Bokha-cheon, Heuk-cheon, and Wonju-cheon were predicted to improve from $0.063mg/{\ell}$ to $0.010mg/{\ell}$, from $0.091mg/{\ell}$ to $0.053mg/{\ell}$, from $0.199mg/{\ell}$ to $0.100mg/{\ell}$, from $0.168mg/{\ell}$ to $0.148mg/{\ell}$, from $0.186mg/{\ell}$ to $0.105mg/{\ell}$, from $0.019mg/{\ell}$ to $0.013mg/{\ell}$, and from $0.822mg/{\ell}$ to $0.236mg/{\ell}$, respectively.

  • PDF