• Title/Summary/Keyword: effluent water

Search Result 1,210, Processing Time 0.029 seconds

Removal of Phosphorus and NOM in Wastewater Effluent Using Ejector.BAF System (분사배출 고도 응집.생물여과 공정을 이용한 하수처리수 중의 TP 및 NOM 제거)

  • Jang, Young-Ho;Kang, Dong-Han;Kim, Keugtae;Im, Heung-Bin;Hwang, Chan-Won;Kim, Mi-Jung;Shin, Hyung-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.505-511
    • /
    • 2012
  • While the existing sewage treatment facilities are mainly being operated by biological processes, winter-time efficiency improvement and additional phosphorus treatment equipment using chemicals have been required to follow the effluent criteria of TP (0.2, 0.3 and 0.5 mg/L for the zone of I, II and III respectively) and $BOD_5$ (5.0 mg/L) which is intensified from 2012 in Republic of Korea. We made an investigation into actual condition of biological treatment process and calculated the optimal chemical input amount by jar test of supernatant of secondary sedimentation tank to evaluate the process improvement for the intensified criteria. Ejector BAF system for removing TP, $BOD_5$ of sewage effluent was suggested. The concentration of TP from biological process is 0.3-0.8 mg/L, and the input amount of optimal chemical coagulant was above Al/P ratio of 3(1.9 mg/L as Al) to meet the criteria of TP for secondary treatment effluent. From the results of this experiment, the best Al/P ratio for Ejector BAF system was about Al/P ratio of 1, and LV of BAF process for intensified criteria of $BOD_5$ and TP was below 1.97m/hr.

Heat Pump System Using Heated Effluent of Thermal Power Generation Plant as a Heat Source (해수를 이용한 화력발전소 폐열회수 히트펌프 시스템)

  • Ryou, Y.S.;Kang, Y.K.;Kim, Y.H.;Jang, J.K.;Kim, J.G.;Lee, H.M.;Kang, G.C.;Nah, K.D.;Huh, T.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.190-190
    • /
    • 2011
  • In South Korea the gross generation and heated effluent of power generation plant was 259 TWh and 4.73 billion tons in 2008. And then the waste heat from power generation was 388 TWh. It shows that the efficiency of thermal power generation plant is about 40%. Therefore to reduce $CO_2$ emission from thermal power generation plant, the energy of this heated effluent must be reused to heat buildings or farm facilities. In South Korea horticultural facilities of about 25% are heated in winter season. Total area of greenhouses which are heated is about 13,000 ha. Total heat amount needed to warm greenhouse of 13,000 ha in winter season is only 3.4% of total waste heat from power generation plant. In this study a heat pump system was designed to reuse the waste heat from power generation. Especially new heat exchanger was developed to recover the thermal energy from waste water and this model considered anti-corrosion against sea water and low cost for economic feasibility. This heat recovery system was installed in mango growing greenhouse around thermal power generation plant in Seogwipo-city, Jeju Special Self-Governing Province. The result of preliminary test shows that the heating cost of about 90% is saved as compared to boiler using tax free light oil as a fuel.

  • PDF

Performance Evaluation of Tertiary Post-denitrification Processes for the Reuse of Secondary Effluent from Wastewater Treatment Plant (하수2차처리수의 재이용을 위한 후탈질공정의 평가)

  • Lee, Chanho;Yun, Zuwhan;Yi, Yun Seok;Lee, Han Saem;Ahn, Dong Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.642-649
    • /
    • 2007
  • The effectiveness of add-on tertiary treatment processes for the polishing of the effluent of a biological nutrient removal (BNR) system from a modified $A^2/O$ process has been examined under the field condition with pilot-scale plants. The add-on treatment processes of 1) combined biofilm anoxic reactor and sand filtration, and 2) two-stage denitrification filter had been operated with various operating conditions. The experimental results indicated that two-stage denitrification filter could produced a better polished tertiary effluent. Filtration rate of $150m^3/m^2{\cdot}d$ for the 2-stage denitrifying filter could decrease the nitrate removal probably due to shorter detention time that caused insufficient reaction for denitrification. Two stage denitrification filter operated with M/N ratio of 3.0 and filtration rate of $100m^3/m^2{\cdot}d$ produced the tertiary effluent with nitrate and SS concentraitons of 2.8 mg/L and 2.3 mg/L, respectively. When the operating temperature reduced $30^{\circ}C$ to $18^{\circ}C$, $NO_3{^-}-N$ removal efficiency decreased from 73% to 68%.

Improving the Initial Effluent Turbidity by Polyaluminium Chloride(PAC) Coating in Rapid Sand Filtration (급속모래여과에서 PAC 피복에 의한 초기 유출수의 탁도 개선)

  • Yoon, Tae-Han;Kim, Woo-Hang
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.253-260
    • /
    • 2002
  • The purpose of this research was to describe the mechanisms and prevention of initial degradation in turbidity of the sand filter effluent. The method used was by adding a coagulant (PAC) to the sand filter after backwashing as a means of reducing turbidity. It was found that adding 80 mg/L of PAC solution to the sand filter was very effective in improving the initial effluent turbidity. A turbidity removal efficiency of 99 % was observed in the initial term period as compared to a 70% efficiency without PAC addition. The PAC solution added to the sand filter resulted in high aluminum concentration at the upper layer as compared with the bottom layer of the sand filter column. A change in the zeta potential to a strong positive-ions at upper layer was observed at this time but only a small change was obtained at the bottom. This result showed that the zeta potential of the sand was changed to positive with PAC coating. The effect of pH on zeta potential with PAC addition was also investigated. Zeta potential was greatly changed to positive-ion at pH 4~6. A series of experiments was then conducted in this study to optimize the pH of the PAC solution to be added to the sand filter after backwashing. The removal efficiency of turbidity was found to be highest at pH 5. This result suggested that hydrolyzed aluminium species attached to the surface of the sand enhanced the removal of turbidity of the effluent.

Modelling of effluent and GHGs for wastewater treatment plants using by MS Excel simulator(PKES) (MS Excel 시뮬레이터(PKES)를 이용한 하수처리장 유출수 및 온실가스 모델링)

  • Bin, Jung-In;Lee, Byung-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.735-745
    • /
    • 2014
  • This paper presents PKES(PuKyung -Excel based Simulator) for WWTPs(wastewater treatment plants) by using MS Excel and VBA(Visual Basic for Application). PKES is a user-friendly simulator for the design and optimization of the whole plant including biological and physico-chemical processes for the wastewater and sludge treatment. PKES calculates the performance under steady or dynamic state and allows changing the mathematical model by the user. Mathematical model implemented in PKES is a improved integration model based on ASM2d and ADM1 for simulation of AS(activated sludge) and AD(anaerobic digestion). Gaseous components of $N_2$, $N_2O$, $CO_2$ and $CH_4$ are added for estimation of GHGs(greenhouse gases) emission. The simulation results for comparison between PKES and Aquasim(EAWAG) showed about the same effluent concentrations. As a result of verification using by measured data of BOD, TSS, TN and TP for 2 years of operation, calculated effluent concentrations were similar to measured effluent concentrations. The values of average RMSE(root mean square error) were 1.9, 0.8, 1.6 and 0.2 mg/L for BOD, TSS, TN and TP, respectively. Total GHGs emission of WWTP calculated by PKES was 138.5 ton-$CO_2$/day and GHGs emissions of $N_2O$, $CO_2$ and $CH_4$ were calculated at 21.7, 28.9 and 87.9 ton-$CO_2$/day, respectively. GHGs emission of activated sludge was 32.5 % and that of anaerobic digestion was 67.5 %.

Study on the Performance of Constructed Wetland System for Sewage Treatment (인공습지 오수처리시설의 처리성능에 관한 연구)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.96-105
    • /
    • 2000
  • Field experiment was performed from August 1996 to December 1999 to examine the performance of constructed wetland system for wastewater treatment in rural area. The constructed wetland system was installed in Konkuk University and the effluent from septic tank of school building was used as an influent to the treatment basin. The treatment basin was composed of sand bed with planted reed. From August 1996 to June 1998 the hydraulic loading rate was fixed with about 15.63cm/day and theoretical detention time was 1.38 days, and from July 1998 to December 1999 the hydraulic loading rate was about 6.25cm/day and theoretical detention time was 3.5days. It worked continuously even during winter time, and the sewage flowed without freezing even when average daily air temperature was below -1$0^{\circ}C$. Average removal rate of BOD , COD, and SS was about 70%, T-P removal rate was about 50.8% , and T-N removal rate was 23.9%. The reason for poor T-N removal might be due to high influent concentration and short retention times. At the later years BOD and COD removal rates were increased , and SS and T-P removal rates did not change significantly , but T-N removal rates were decreased. The effluent of the wetland system often effluent water quality standards for sewage treatment plant, therefore, further treatment would be required if the effluent need to be discharged to the public water. Wetland system involves relatively large land area and could be suitable for rural area. Therefore, utilization of reclaimed sewage for agricultural purpose or subsequent land treatment is recommended as a ultimate disposal of sewage for agricultural purpose or subsequent land treatment is recommended as a ultimate disposal of sewage in rural area.

  • PDF

Characteristics of distribution and decomposition of organic matters in stream water and sewage effluent (하천수와 하수처리장 방류수의 유기물 분포 및 분해 특성)

  • Seo, Hee-Jeong;Kang, Yeoung-Ju;Min, Kyoung-Woo;Lee, Kyoung-Seog;Seo, Gwang-Yeob;Kim, Seung-Ho;Paik, Kye-Jin;Kim, Seong-Jun
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • This study was performed to investigate the distribution and decomposition characteristics of organic matter in stream water and sewage effluent located in Gwangju. Average of dissolved organic carbon (DOC) to total organic carbon (TOC) ratio was approximately 73.9% in the Youngsan river system. The concentration of refractory dossolved carbon (RDOC) was 3.7 mg/L corresponding to 80.9% of the DOC. The ratio of recalcitrant organic carbon was relatively higher than that of biodegradable organic carbon in stream. Oxidation efficiencies in the stream were 45.0% for BOD, 63.0% for $COD_{Mn}$ and 106.5% for CODcr. In case of sewage effluent was 33.6%, 65.7% and 136.1% respectively. Mean decomposition rate ($K_d$) of Youngsan river mainstream, its tributary sites and sewage effluent were about $0.042\;day^{-1}$, $0.043\;day^{-1}$ and $0.028\;day^{-1}$, respectively and the difference was not significant between the mainstream and its tributary sites (t-test, p>0.05). $K_d$ of the sewage effluent was lower than that of stream water.

An Evaluation of Heating Performance of the Heat Pump System Using Wasted Heat from Thermal Effluent for Greenhouse Facilities in Jeju (발전소 온배수 폐열을 이용한 제주 시설온실 냉난방용 열펌프 시스템의 난방성능 평가)

  • Moon, Sungbu;Hyun, Myung-Taek;Heo, Jaehyeok;Lee, Dong-Won;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • A heat pump system using wasted heat from thermal effluent to supply the heating energy can reduce energy consumption and emissions of greenhouse gases by greenhouse facilities nearby. The Jeju National University consortium constructed a heat pump system using the thermal effluent from the Jeju thermal power plant of KOMIPO to provide with cool or hot water to greenhouse facilities located 3 km from the power station. In this paper, the system configuration of the heat pump system was summarized, and the results of operations for demonstration of a heating performance carried out during the winter season in 2018 were investigated. The preoperational tests proved that the water temperature drop through the pipeline transporting extracted heat was less than $2^{\circ}C$. The COP (coefficient of performance) of the heat pump was higher than 4.0, and hot water with the maximum temperature of $50^{\circ}C$ could be supplied to greenhouse facilities by utilizing wasted heat from thermal effluent.

Degradation and Removal of Nonylphenol Ethoxylates in Wastewater by a Sequencing Batch Reactor Process (연속회분식 반응조 공정에서 하수 중의 nonylphenol ethoxylates의 분해 및 제거)

  • Lee, Seock-Heon;Bum, Jin-Young;Park, Ki Young;Kim, Jong-Guk;Seo, Yong-Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.680-688
    • /
    • 2004
  • A sequencing batch reactor (SBR) was operated to investigate the degradation and removal of non-ionic surfactant, nonylphenol ethoxylates (NPEOs) in wastewater using lab scale experimental apparatus. About 5mg/L of NPEO was introduced and only < 0.1mg/L of NPEOs and nonylphenol(NP) in total was detected in treated effluent. In the effluent, long chain ethoxylates (NPEO12-15) were not detected, but short chain ethoxylates (NPEO1,2) were in relatively high concentration. NPEOs in the mixed liquor disappeared more rapidly in anaerobic condition than in aerobic condition.