• Title/Summary/Keyword: effluent water

Search Result 1,210, Processing Time 0.035 seconds

Evaluation of a Thermophilic Two-Phase Anaerobic Digestion Coupled with Membrane Process for Garbage Leachate Treatment (음식물 탈리액 처리를 위한 막결합형 고온 2상 혐기성 소화 공정의 평가)

  • Lee, Eun-Young;Jun, Duk-Woo;Lee, Sang-Hwa;Bae, Jae-Ho;Kim, Jeong-Hwan;Kim, Young-O
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • This study evaluated the performance of a thermophilic two-phase anaerobic digestion (TTPAD) coupled with membrane process treating garbage leachate. The pilot-scale treatment system is consisted of thermophilic acidogenic reactor (TAR) and thermophilic methanogenic reactor (TMR) coupled with an ultrafiltration (UF) membrane unit. The hydraulic retention time of TAR and TMR were 4 and 20 days, respectively. Effluent TCOD and SCOD of the TTPAD were $25\;{\pm}\;6\;and\;12\;{\pm}\;3$ g/L, respectively, and the corresponding TCOD and SCOD removal efficiencies were 77% and 81%, respectively. Propionate was major acids as 75% in the effluent. Scum formation was not observed in TTPAD, which might be resulted from complete lipid degradation. However, TTPAD was appeared to be sensitive to free ammonia toxicity. The UF membrane was operated with constant pressure filtration at average TMP 1.3 atm. Permeate flux had a range of 15-30 $L/m^2/hr$. With UF membrane, TCOD removal increased from 77% to 93%, and this SS free effluent would be beneficial to subsequent processes such as ammonia stripping.

The Variation of the Residual Chlorine Concentration in a Distribution Reservoir (유출량 변동에 따른 모형배수지내 잔류염소농도의 변화)

  • Lee, Sang-Jun;Hyeon, In-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.725-733
    • /
    • 2001
  • In this study, variation of effluent of residual chlorine concentration was estimated from bench scale distribution reservoir test according to variation of flow and baffle condition. According to the bench scale test results, when the flow rate was an unsteady state, difference between the case of no-baffle in the reservoir and the case of two-baffles in the reservoir became less than the condition when the effluent flow was in a steady state. Consequently, the results are caused by the flow rate variation. Thus, the baffle is less effective than a clearwell of steady state condition.

  • PDF

Nitrite Accumulation of Anaerobic Treatment Effluent of Slurry-type Piggery Waste (슬러리상 돈사폐수의 혐기성 처리수의 아질산성 질소 축적)

  • Hwang, In-Su;Min, Kyung-Sok;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.711-719
    • /
    • 2006
  • The effluent from anaerobic digestion process of slurry-type piggery waste has a characteristic of very low C/N ratio. Because of high nitrogen content, it is necessary to evaluate nitrogen removal alternative rather than conventional nitrification-denitrification scheme. In this study, two parallel treatment schemes of SBR-like partial nitritation reactor coupled with anaerobic ammonium oxidation (ANAMMOX) reactor, and a nitritation reactor followed by nitrite denitrification process were evaluated with a slurry-type piggery waste. The feed to reactors adjusted with various $NH_4-N$ and organics concentration. The nitrite accumulation was successfully accomplished at the loading rate of about $1.0kgNH_4-N/m^3-day$. The $NO_2-N/NH_4-N$ ratio 1~2.6 in nitritated effluent that operated at HRT of 1 day indicated that SBR-like partial nitritation was applicable to ANAMMOX operation. Meanwhile, the nitrite accumulation of 87% was achieved at SBR operated with HRT of 3 days and $0.4mgO_2/L$ for denitritation. Experimental results further suggested that HRT (SRT) and free ammonia(FA) rather than DO are an effective control parameter for nitrite accumulation in piggery waste.

Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System (Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거)

  • Sohn, Jin-Sik;Park, Soon-Ho;Jung, Eui-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.

Removal of nitrogen and phosphorus of the secondary effluent by electro-coagulation (전기응집을 이용한 2차 유출수의 질소.인 제거 공정 연구)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.579-589
    • /
    • 2012
  • To reduce extensive energy costs of the internal recycling for the purpose of denitrification in the advanced wastewater treatment, a post-treatment process using an electro-coagulation to treat nitrate in the secondary effluents is evaluated in this study. Removals of phosphorus and organics in the secondary effluents by the electro-coagulation were also evaluated to propose an alternative advanced wastewatert treatment process. A series of experiments of the electro-coagulation were carried out with the following 4 different samples: synthetic solution containing nitrate only, synthetic solution containing nitrate as well as phosphorus, secondary effluents from activated sludge cultivated in laboratory, and secondary effluents from real wastewater treatment plants. Removals of nitrate and phosphorus in the synthetic solution were 30 and 97 % respectively, which verified the feasibility of the process. Removals of nitrate, phosphorus and COD in the secondary effluents from the cultivated sludge in laboratory were 49, 90 and 19 % respectively. Removal efficiency of the total nitrogen, nitrrate, phosphorus and COD in the secondary effluent from real wastewater treatment plant were 50, 61, 98 and 80 % respectively. The removal of the total nitrogen was less than the nitrate as expected, which is due to the formation of ammonia nitrogen in the cathode. But the proposed scheme could be an energy saving and alternative process for the advanced wastewater treatment if further studies for the process optimization are carried out.

Influence factors and Efficiencies Characteristics for Treatment of Wastewater Containing Phenol (Phenol 함유폐수의 처리를 위한 영향인자와 성능특성)

  • Kang, Sun-Tae;Kim, Jeong-Mog
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.119-126
    • /
    • 1996
  • Influence factors and efficiency characteristics for treatment of wastewater containing phenol were studied with using Pseudomonas sp. B3. It took 130 hours to remove phenol, when only activated sludge of terminal disposal palnt of sewage was innoculated in batch culture, but it was required just 36 hours, when bacteria degrading phenol and activated sludge were simultaneously innoculated. If only phenol an carbon source was used, it necessary 36 hours for biodegradation of phenol, while glucose was added to medium, it took 73 hours. It was revealed as excellent effluent and SVI, when the F/M ratio, COD and phenol concentration were 53mg/l and 1.2mg/l, respectively, and optimum F/M ratio was revealed 0.31. The reactor were seriously shocked as reducing hydraulic retention time at constant phenol concentration more than increasing phenol concentration at constant hydraulic retention time, when volumetric loading rate was increased to $0.8kg\;phenol/m^3{\codt}d$ from $1.6kg\;phenol/m^3{\codt}d$. And also the effluent phenol concentration was 34mg/l after starting 12 hours of shocking and reactor was recovered as steady state after 65 hours of changing in the former test. Although the effluent phenol concentration was maximum value with 12mg/l after starting 20 hours of shocking and reactor was recovered as steady state after 54 hours of changing in the later test.

  • PDF

Survey of the Secondary Effluents from Municipal Wastewater Treatment Plants in Korea (우리나라 하수처리장 방류수 수질현황 및 특성)

  • Kim, Youngchul;An, Ik-Sung;Kang, Min-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.158-168
    • /
    • 2005
  • In this study, the discharging effluents from have been 9 municipal wastewater treatment plants surveyed for 1 year-period. Statistics including probability distribution, cumulative occurrence concentration and other statistical parameters were presented. In addition, treatment performance and its stability were also discussed. Most of the plants, have an operational problem of high soluble organic content in the secondary effluent which may be associated with the integrated treatment of human and livestock manures. Nitrogen concentration in the effluents were usually higher during the period of summer and winter. It was found that this is mainly due to lack of the proper C/N ratio during the summer, or/and the effects of low temperature and less dilution by dry weather during the winter. Phosphorus concentration is sharply increased in June. Discussion with plant operators told that it is due to the dissolution of phosphate from the sludge accumulated in the primary settling tanks from the early spring to june. During this period, usually, sludge treatment line is highly overloaded with flush-outs of the sediments also stored in the bottom of combined sewer due to the low flow during winter season. Most of the plants can meet new effluent discharge limits of the nitrogen and phosphorus, and total coliform without further treatment.

The pollutants removal and disinfection of secondary effluent from sewage treatment plant in loop reactor using silver nanoparticles coated on activated carbon (은나노 활성탄을 이용한 Loop Reactor에서 하수 2차 처리수 중의 오염물질 제거 및 소독 효과)

  • Seon, Yong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.361-367
    • /
    • 2016
  • Pollutants removal and disinfection effect of secondary effluent from final settling tank of sewage treatment plant of W city were investigated in Loop Reactor using ordinary granular activated carbon(GAC) and GAC coated with silver nanoparticles. The results showed that the removal efficiency of $COD_{Mn}$, T-N and T-P using GAC with silver nanoparticles were higher than using the ordinary GAC. The removal efficiency of T-P using GAC with silver nanoparticles is 45.4% and that of T-P using ordinary GAC is 30.9% in the same case of the input amount of 20 g/L of GAC. The total califorms is reduced according to increasing input amount of GAC with silver nanoparticles and ordinary GAC. The disinfection efficiency of total coliforms in case of GAC with silver nanoparticles is much higher than that in case of ordinary GAC. For all experiments using the silver nanoparticles, the total coliforms is under 26 cfu/mL and this shows very excellent disinfection effect.

Feasibility Study of UV-Disinfection for Water Reuse of Effluent from Wastewater Treatment Plant (용수재이용을 위한 하수처리 유출수의 UV 소독 효율 연구)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.126-137
    • /
    • 2003
  • The feasibility study of UV-disinfection system was performed for disinfection of effluent from wastewater treatment plant. Three low-pressure UV lamps of 17, 25, and 41 W were examined with various flow rates. Low-pressure UV lamps of 17W were examined with various turbidity, DOM (dissolved organic matter), and SS (suspended solid). The pilot plant was a flow-through type UV-disinfection system, and the range of exposure time varied from 5 to 40 seconds, turbidity from 0 to 40 NTU, DOM from 0 to 30 mg/L, and SS from 10 to 40 mg/L. The 41W lamp demonstrated complete disinfection showing no survival ratio in all the experimental conditions, and generally 17W and 25W lamps also showed high removal ratio over 97%. For the same UV dose (UV intensity times exposure time), high intensity-short exposure conditions showed better disinfection efficiency than low intensity-long exposure conditions. While the effects of turbidity and DOM were not apparent, the effects of SS was significant on the disinfection efficiency which indicates that SS control before UV-disinfection appears to be necessary to increase removal efficiency. Considering characteristics of effluent from existing wastewater treatment plants, cost-effectiveness, stable performance, and minimum maintenance, the flow-through type UV-disinfection system with high intensity and low-pressure lamps was thought to be a competitive disinfection system for wastewater reclamation.

Improvement of Organics and Nitrogen Removal by HRT and Recycling Rate in Air Lift Reactors (공기부상반응조에서 체류시간과 반송율에 의한 유기물질 및 질소제거 향상에 관한 연구)

  • Kim, Jin-Ki;Yu, Sung-Whan;Lim, Bong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • This study was performed to evaluate the air lift reactors (ALR) by variations of HRT and recycling rate. Air lift reactor was composed of bioreactor and clarifier above it. To remove organic matters and nitrogen through the formation of microbic film and filtration, bio-filter reactors were filled with clay, glass, bead, waste plastic, respectively. Influent wastewater was fed to biofilter reactor, and effluent wastewater from bio-filter reactor was injected ALR again, instead of adding external carbon source. Effluent BOD concentration was satisfied with lower than 10 mg/L in recycling rate 100% regardless of the variation of HRT and the kinds of media materials. In HRT 4 hr, recycling rate 100%, BOD removal efficiency rate was from about 85 to 90%, COD removal efficiency rate was higher than 90%. Effluent TN concentration was satisfied with less than 20 mg/L, if HRT was maintained by over than 6 hr regardless of recycling rate and media materials. Over than HRT was 4 hr, microbes concentration in air lift reactor was maintained over than 2,500 mg/L constantly, not sensitive to environmental condition, and organic removal was effective as it was higher.