• Title/Summary/Keyword: effluent water

Search Result 1,210, Processing Time 0.027 seconds

Evaluation of Granular Activated Carbon Process Focusing on Molar mass and size distribution of DOM (DOM의 분자량과 크기분포에 따른 입상활성탄 공정의 평가)

  • Chae, Seon H.;Lee, Kyung H .
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • The primary objective of this study was to evaluate the variation of the molecular size distribution by granular activated carbon (GAC) adsorption. GAC adsorption was assessed by using the rapid small-scale column test (RSSCT) and high-performance size-exclusion chromatography (HPSEC) was used to analyze the molecular size distribution (MSD) in the effluent of GAC column. RSSCT study suggested that GAC adsorption exhibited excellent interrelationship between dissolved organic carbon (DOC) breakthrough and MSD as function of bed volumes passed. After GAC treatment, the nonadsorbable fraction which was about 25percents of influent DOC corresponded to the hydrophilic (HPI) natural organic carbon (NOM) of NOM fractions and was composed entirely of <300 molecular weight (MW) in the HPSEC at the initial stage of the RSSCT operation. The dominant MW fraction in the source water was 1,000~5,000daltons. At the bed volumes 2,500, MW <500 of GAC treated water was risen rather than it of source water. After the bed volumes 7,300 of operation, the MW 1,000~3,000 fraction was closed to about 80percents of DOC found in the GAC influent. The Number-average molecular weight (Mn) value determined using HPSEC for the effluent of GAC column was gently increased as DOC breakthrough progress. The quotient p(Mw/Mn) can be used to estimate the degree of polydispersity was shown greatest value for the GAC effluent at the initial stage of the RSSCT operation.

Development of high-hydrophilic Biofilter for Decentralized Regions and Rural Communities (분산지역의 생활하수 처리를 위한 고친수성 Biofilter 개발)

  • Kwon, Tae-Young;Yoon, Chun-Gyeong;Jung, Kwang-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.678-686
    • /
    • 2006
  • The feasibility of the high-hydrophilic biofilter was examined for application in rural wastewater treatment in Korea. The intermittent trickling biofiter was developed for wastewater treatment of media and examined instantaneous wetting water and immersional wetting water. Melamin foam absorbed 120 times it's weight in water and maintained wetting status than other materials. These characteristics are improvement for application in rural areas showing large variance of amount of influent. The biofilter process was effective in treating organic pollutants; mean removal efficiencies of $BOD_5$ and TSS were above 80%. The average SS concentrations of effluent was showed below $10mg/L^{-1}$ and meet guidelines in special regions, however, the average concentration of $BOD_5$ was about $20mg/L^{-1}$. The removals of T-N and T-P were relatively less effective and removal efficiencies were below 40%. It might meet the guidelines for T-P because of low levels of influent T-P concentration. However, the T-N concentration were too high and further treatment is required. The effluent concentration of $NH_4-N$ showed a significant reduction rate about 43.8%, but part of $NH_4-N$ was transformed to $NO_2-N$ and $NO_3-N$ inside the biofilter through nitrification process. The effluent concentration of org-P was removed about 78.8% of influent concentration by filtration. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the hydrophilic biofilter system was thought to be an effective and feasible alternative for decentralized rural areas.

Application of RO Membrane Process for Reuse of MBR Effluent (MBR 유출수 재활용을 위한 RO 막분리 공정에 대한 연구)

  • Yoon, Hyun-Soo;Kim, Jong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1391-1398
    • /
    • 2010
  • Reuse feasibility of MBR effluent of S Electronic Company's organic wastewater as a LCD process water was investigated by a $32m^3/d$ pilot-scale RO membrane process. The effects of operating pressure and permeate flux at constant 85% recovery of RO membrane process using MBR effluent were analyzed for transmembrane pressure and period for CIP by membrane fouling as well as rejection of TOC and conductivity. MBR effluent requires additional treatment to meet the LCD process water quality criteria of TOC<1 mg/L and conductivity<$100{\mu}S/cm$ which is stringent as compared with those of conventional reuse water quality criteria. The RO process operated at 85% recovery with stepwise increasing of permeate fluxes from 12.5 LMH to 22.0 LMH was able to meet LCD process water quality criteria. However, the transmembrane pressure increased and the period of CIP decreased as increasing permeability fluxes due to fouling of RO membrane. The optimum operational conditions of RO membrane process were permeate fluxes of 16.5~18.5 LMH with operating pressure of $6.7{\sim}12.4kgf/cm^2$ and CIP period of 20~25 days at constant 85% recovery.

Treatment Level and Reactions of a Treatment Pond System Purifying Sinyang Stream Water (신양천 하천수정화 연못시스템의 처리수준 및 연못반응)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.6
    • /
    • pp.1-12
    • /
    • 2005
  • Treatment level and pond reactions of a pond system were examined from May to October 2002. The system was constructed in July 2000 for purifying water of Sinyang stream that flows into Koheung Estuarine Lake located in the southern part of the Korean Peninsula. The system was composed of a primary and a secondary pond in series and established on the rice field near the lake. Water pumped from the stream was funneled into the primary pond, whose effluent was discharged into the secondary pond by gravity flow. Effluent from the secondary pond was funneled into wetlands. About 130 $m^3$/day of water was pumped into the primary pond and detention time of the primary and secondary pond was about 2 days. DO from the surface to the 1.0 m depth of the primary and secondary pond was in the rage of 5.2 to 11.0 mg/L and 4.3 to 0.7 mg/L, respectively. DO at the bottom layer of the primary pond was 0 mg/L and that of the secondary pond ranged 3.0~4.7 mg/L. The primary pond functioned as a facultative pond and the secondary as an aerobic one. The temperature difference between the surface and bottom layers of the ponds in August was about $2.5^{\circ}C$ and that in May and October was about $1.0^{\circ}C$. Thermocline was observed in the primary pond during the high ambient temperature of August. The sludge depth of the primary pond in May, August, and October was 2.4, 1.9, and 2.2 cm, respectively. That of the secondary pond was 1.2, 1.0, and 1.1 cm, respectively. SS, $BOD_5$, T-N, and T-P concentrations in influent averaged 16.64, 6.71, 6.21, and 0.23 mg/L and those in effluent from the primary pond averaged 11.48, 4.97, 4.81, and 0.17 mg/L, respectively. The removal rates of the primary pond for SS, $BOD_5$, T-N and T-P were 31%, 26%, 22%, and 24%, respectively. Average concentrations of SS, $BOD_5$, T-N, and T-P in effluent from the secondary pond were 9.81, 4.07, 4.03, and 0.14 mg/L, respectively and the abatement rates of the secondary pond for SS, $BOD_5$, T-N and T-P were 20%, 12%, 13%, and 15%, respectively. SS, $BOD_5$, T-N and T-P concentrations in effluent from the primary pond were significantly low(p=0.001) when compared with those from the secondary one.

A Study on Anaerobic Sewage Treatment Using a Fluidized Bed Reactor (유동상 반응조를 이용한 하수의 혐기성 처리에 관한 연구)

  • Ye, Hyoung-Young;Lee, Eun-Young;Bae, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.265-273
    • /
    • 2012
  • Anaerobic sewage treatment is drawing attentions due to high energy consumptions and sludge production associated with aerobic treatment. This study evaluates the treatment characteristics and energy balance of a fluidized bed reactor (FBR) for treating domestic sewage at $20^{\circ}C{\sim}25^{\circ}C$ for 245 days. Sewage fed to the FBR was a primary clarifier effluent of a domestic sewage treatment plant with COD of 99-301 mg/L and $BOD_{5}$ of 37-149 mg/L. Effluent $SBOD_{5}$ and its removal efficiency at HRT of 1~3 h were 6~15 mg/L and 73.4~85.5%, respectively, achieving high removal efficiency for soluble organic substances even at short HRTs. COD removal efficiency and its effluent concentration were 53.8~75.9% and 51~83 mg/L, respectively. The energy production potential from gaseous methane was 0.009-0.028 kWh/$m^{3}$, which satisfies the energy required for the FBR operation.

A Study on Low Concentration Substrate Removal by Using the Aerated Submerged Biofilter (호기 생물막법에 의한 저농도 기질제거법에 관한 고찰)

  • 홍성철;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.2
    • /
    • pp.59-68
    • /
    • 1989
  • This study was performed employing the two stage aerated submerged biofilter of media pore size 1.5cm and 2cm, and infiuent substrate concentrations were 30.25mg COD/l, 50.1mg COD/l respectively. The purpose was to determine the treatment efficiency at the low concentration infiuent, reaction order and substrate flux with application of variable-order model that was presented by Rittmann and McCarty. . The results are as follows. 1. Treatment efficiency of 1st reactor was about BOD 82% and COD 76%, when effluent concentration was BOD 3.9 ~ 6.8, COD 7.1 ~ 12.5 mg/l, and this effluent concentration didn't satisfy the water quality grade I, II of river and lake. But as treated effluent of 1st reactor with 2nd reactor, we could achieve appropriate water quality, since instillation of 2nd reactor was needed. 2. Difference of media pore size between 1.5cm and 2cm didn't effect significantly to treatment efficiency and since this of 2nd reactor was about BOD 60%, COD 50%, an consideration of economic point of view should be carried out in field application. 3. Reaction order and substrate flux was varied 0.9851~0.9956 and 0.0028~0.0405 mg/$cm^{2} \cdot day$, and the substrate flux was increased as infiuent substrate concentration increased.

  • PDF

Application of Coagulation-UF Hybrid Membrane Process for Reuse of Secondary Effluent (하수 2차 처리수 재이용을 위한 hybrid 응집-UF 막분리 공정의 적용)

  • Lee, Chul-Woo;Shon, Jung-Ki;Shon, In-Shik;Han, Seung-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.605-612
    • /
    • 2005
  • The objective of this study was to evaluate the factors affecting the optimization of coagulation hybrid UF membrane processes for the reuse of secondary effluent from sewage treatment plant. The experimental results obtained from the UF membrane process showed that organic colloids in the size range of $0.2{\mu}m{\sim}1.0{\mu}m$ caused the most substantial influence on the fouling of UF membrane. When using a coagulation pretreatment to UF membrane, alum dosage of 50mg/L resulted in the least reduction in membrane permeate flux. Also, for the rapid mixing process, in-line mixer type was more efficient for organic removal than back mixer type. Therefore, it may be concluded that coagulation-UF hybrid membrane process comparing to UF alone process showed not only higher removal efficiency of organic matter, but also substantial improvement of permeate flux of UF membrane.

Thermal Effluent Diffusion and Flow Characteristics using the TGPS Buoy (TGPS 부이를 이용한 온배수 확산과 흐름 특성)

  • 박일흠;이연규;최정민
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.614-617
    • /
    • 2000
  • To get the maximum diffusion boundary of thermal effluent of Youngkwang Nuclear Power Plant, paths of TGPS Buoy and temperatures of surface water are obtained to 4 times at spring tide during 1 year. According to the paths of TGPS Buoy, the flumes of thermal effluent are moved about 12km from outlet to SW or WSW direction. After 3∼4 times of tidal period the waters are reached to Chilsan Island because the ebb flow is more predominant than the flood flow in this area. At the spring and fall season, a sudden drop of surface water temperature is detected around 5km radius from the outlet. At the summer season, it is measured about 10km. On the other hand the flumes are continuously cooled down by the atmosphere condition at winter season.

  • PDF

Development of the Automatic Control System for the Advanced Phosphorus Treatment in Sewage Treatment Plant (하수처리시설에서 인 고도처리를 위한 자동제어시스템 개발에 관한 연구)

  • Kim, Seon-Gok;Lee, Ho-Sik;Jun, Tae-Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.300-304
    • /
    • 2012
  • It has a limitation to satisfy the phosphorus effluent criteria of 0.2 mg/L which will be reinforced from 2012 with the Biological Nutrient Removal (BNR) process. The chemical coagulation process has been operated in parallel with the biological treatment process for advanced treatment of phosphorous in the developed countries including Europe. However, the coagulation process has some disadvantages such as the desired goal may not be achieved without injecting the optimum dosage of the coagulant. This study developed the automatic control system to inject the optimum dosage of phosphorous coagulant into the coagulation process. The adopted coagulant was 10% Poly Aluminum Chloride (PAC) in this study. The automatic control system developed in this study was adopted for the treatment of the phosphorus from the effluent in SBR process. The automatic control system was composed of the data receiving part, the optimum coagulant dosage control part and the data transmit part. The result of the phosphorous advanced treatment of the SBR effluent using the automatic control system showed the removing efficiency over 95% consistently with the phosphorous concentration under 0.02 ~ 0.15 mg/L. The reproducibility analysis for checking the safety of automatic control system showed more than 95% correlation.