• Title/Summary/Keyword: efficient throughput

Search Result 709, Processing Time 0.027 seconds

Cooperative Sensing Clustering Game for Efficient Channel Exploitation in Cognitive Radio Network (인지무선 네트워크에서 효율적인 채널 사용을 위한 협력센싱 클러스터링 게임)

  • Jang, Sungjeen;Yun, Heesuk;Bae, Insan;Kim, JaeMoung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • In cognitive radio network (CRN), spectrum sensing is an elementary level of technology for non-interfering to licensed user. Required sample number for spectrum sensing is directly related to the throughput of secondary user and makes the tradeoff between the throughput of secondary user and interference to primary user. Required spectrum sensing sample is derived from required false alarm, detection probability and minimum required SNR of primary user (PU). If we make clustering and minimize the required transmission boundary of secondary user (SU), we can relax the required PU SNR for spectrum sensing because the required SNR for PU signal sensing is related to transmission range of SU. Therefore we can achieve efficient throughput of CRN by minimizing spectrum sensing sample. For this, we design the tradeoff between gain and loss could be obtained from clustering, according to the size of cluster members through game theory and simulation results confirm the effectiveness of the proposed method.

A Study on the Throughput Enhancement in Software Implementation of Ultra Light-Weight Cryptography PRESENT (초경량 암호 PRESENT의 소프트웨어 구현 시 처리량 향상에 대한 연구)

  • Park, Won-kyu;Cebrian, Guillermo Pallares;Kim, Sung-joon;Lee, Kang-hyun;Lim, Dae-woon;Yu, Ki-soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.316-322
    • /
    • 2017
  • This paper suggests an efficient software implementation of lightweight encryption algorithm PRESENT which supports for secret key lengths of 80-bits. Each round of PRESENT is composed of the round key addition, substitution, and permutation and is repeated 31 times. Bo Zhu suggested combined substitution and permutation for efficient operation so that encryption throughput has been increased 2.6 times than processing substitution and permutation at separate times. The scheme that suggested in this paper improved the scheme of Bo Zhu to reduce the number of operation for the round key addition, substitution, and permutation. The scheme that suggested in this paper has increased encryption throughput up to 1.6 times than the scheme of Bo Zhu but memory usage has been increased.

An Area-efficient Design of SHA-256 Hash Processor for IoT Security (IoT 보안을 위한 SHA-256 해시 프로세서의 면적 효율적인 설계)

  • Lee, Sang-Hyun;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.109-116
    • /
    • 2018
  • This paper describes an area-efficient design of SHA-256 hash function that is widely used in various security protocols including digital signature, authentication code, key generation. The SHA-256 hash processor includes a padder block for padding and parsing input message, so that it can operate without software for preprocessing. Round function was designed with a 16-bit data-path that processed 64 round computations in 128 clock cycles, resulting in an optimized area per throughput (APT) performance as well as small area implementation. The SHA-256 hash processor was verified by FPGA implementation using Virtex5 device, and it was estimated that the throughput was 337 Mbps at maximum clock frequency of 116 MHz. The synthesis for ASIC implementation using a $0.18-{\mu}m$ CMOS cell library shows that it has 13,251 gate equivalents (GEs) and it can operate up to 200 MHz clock frequency.

Design of an Efficient VLSI Architecture of SADCT Based on Systolic Array (시스톨릭 어레이에 기반한 SADCT의 효율적 VLSl 구조설계)

  • Gang, Tae-Jun;Jeong, Ui-Yun;Gwon, Sun-Gyu;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.3
    • /
    • pp.282-291
    • /
    • 2001
  • In this paper, an efficient VLSI architecture of Shape Adaptive Discrete Cosine Transform(SADCT) based on systolic array is proposed. Since transform size in SADCT is varied according to the shape of object in each block, it are dropped that both usability of processing elements(PE´s) and throughput rate in time-recursive SADCT structure. To overcome these disadvantages, it is proposed that the architecture based on a systolic way structure which doesn´t need memory. In the proposed architecture, throughput rate is improved by consecutive processing of one-dimensional SADCT without memory and PE´s in the first column are connected to that in the last one for improvement of usability of PE. And input data are put into each column of PE in parallel according to the maximum data number in each rearranged block. The proposed architecture is described by VHDL. Also, its function is evaluated by MentorTM. Even though the hardware complexity is somewhat increased, the throughput rate is improved about twofold.

  • PDF

Temporary Access Selection Technology in WIFI Networks

  • Lu, Yang;Tan, Xuezhi;Mo, Yun;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4269-4292
    • /
    • 2014
  • Currently, increasing numbers of access points (AP) are being deployed in enterprise offices, campuses and municipal downtowns for flexible Internet connectivity, but most of these access points are idle or redundant most of the time, which causes significant energy waste. Therefore, with respect to power conservation, applying energy efficient strategies in WIFI networks is strongly advocated. One feasible method is dynamically managing network resources, particularly APs, by powering devices on or off. However, when an AP is powered on, the device is initialized through a long boot time, during which period clients cannot be associated with it; therefore, the network performance would be greatly impacted. In this paper, based on a global view of an entire WLAN, we propose an AP selection technology, known as Temporary Access Selection (TAS). The criterion of TAS is a fusion metric consisting of two evaluation indexes which are based on throughput and battery life, respectively. TAS is both service and clients' preference specific through balancing the data rate, battery life and packet size. TAS also works well independently in traditional WLANs in which no energy efficient strategy is deployed. Moreover, this paper demonstrates the feasibility and performance of TAS through experiments and simulations with Network Simulator version 3 (NS3).

An Efficient Downlink MAC Protocol for Multi-User MIMO WLANs

  • Liu, Kui;Li, Changle;Guo, Chao;Chen, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4242-4263
    • /
    • 2017
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) technology has recently attracted significant attention from academia and industry because of it is increasingly important role in improving networks' capacity and data rate. Moreover, MU-MIMO systems for the Fifth Generation (5G) have already been researched. High Quality of Service (QoS) and efficient operations at the Medium Access Control (MAC) layer have become key requirements. In this paper, we propose a downlink MU-MIMO MAC protocol based on adaptive Channel State Information (CSI) feedback (called MMM-A) for Wireless Local Area Networks (WLANs). A modified CSMA/CA mechanism using new frame formats is adopted in the proposed protocol. Specifically, the CSI is exchanged between stations (STAs) in an adaptive way, and a packet selection strategy which can guarantee a fairer QoS for scenarios with differentiated traffic is also included in the MMM-A protocol. We then derive the expressions of the throughput and access delay, and analyze the performance of the protocol. It is easy to find that the MMM-A protocol outperforms the commonly used protocols in terms of the saturated throughput and access delay through simulation and analysis results.

isMAC: An Adaptive and Energy-Efficient MAC Protocol Based on Multi-Channel Communication for Wireless Body Area Networks

  • Kirbas, Ismail;Karahan, Alper;Sevin, Abdullah;Bayilmis, Cuneyt
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1805-1824
    • /
    • 2013
  • Recently, the use of wireless body area networks (WBAN) has been increasing rapidly in medical healthcare applications. WBANs consist of smart nodes that can be used to sense and transmit vital data such as heart rate, temperature and ECG from a human body to a medical centre. WBANs depend on limited resources such as energy and bandwidth. In order to utilise these resources efficiently, a very well organized medium access control (MAC) protocol must be considered. In this paper, a new, adaptive and energy-efficient MAC protocol, entitled isMAC, is proposed for WBANs. The proposed MAC is based on multi-channel communication and aims to prolong the network lifetime by effectively employing (i) a collision prevention mechanism, (ii) a coordinator node (WCN) selection algorithm and (iii) a transmission power adjustment approach. The isMAC protocol has been developed and modelled, by using OPNET Modeler simulation software. It is based on a networking scenario that requires especially high data rates such as ECG, for performance evaluation purposes. Packet delay, network throughput and energy consumption have been chosen as performance metrics. The comparison between the simulation results of isMAC and classical IEEE 802.15.4 (ZigBee) protocol shows that isMAC significantly outperforms IEEE 802.15.4 in terms of packet delay, throughput and energy consumption.

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.

Modeling and Analysis of Load-Balancing Based on Base-Station CoMP with Guaranteed QoS

  • Feng, Lei;Li, WenJing;Yin, Mengjun;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.2982-3003
    • /
    • 2014
  • With the explosive deployment of the wireless communications technology, the increased QoS requirement has sparked keen interest in network planning and optimization. As the major players in wireless network optimization, the BS's resource utilization and mobile user's QoS can be improved a lot by the load-balancing technology. In this paper, we propose a load-balancing strategy that uses Coordinated Multiple Points (CoMP) technology among the Base Stations (BS) to effectively extend network coverage and increase edge users signal quality. To use universally, different patterns of load-balancing based on CoMP are modeled and discussed. We define two QoS metrics to be guaranteed during CoMP load balancing: call blocking rate and efficient throughput. The closed-form expressions for these two QoS metrics are derived. The load-balancing capacity and QoS performances with different CoMP patterns are evaluated and analyzed in low-dense and high-dense traffic system. The numerical results present the reasonable CoMP load balancing pattern choice with guaranteed QoS in each system.

NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators

  • Jeman Park;Misun Yu;Jinse Kwon;Junmo Park;Jemin Lee;Yongin Kwon
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.851-864
    • /
    • 2024
  • Deep learning (DL) has significantly advanced artificial intelligence (AI); however, frameworks such as PyTorch, ONNX, and TensorFlow are optimized for general-purpose GPUs, leading to inefficiencies on specialized accelerators such as neural processing units (NPUs) and processing-in-memory (PIM) devices. These accelerators are designed to optimize both throughput and energy efficiency but they require more tailored optimizations. To address these limitations, we propose the NEST compiler (NEST-C), a novel DL framework that improves the deployment and performance of models across various AI accelerators. NEST-C leverages profiling-based quantization, dynamic graph partitioning, and multi-level intermediate representation (IR) integration for efficient execution on diverse hardware platforms. Our results show that NEST-C significantly enhances computational efficiency and adaptability across various AI accelerators, achieving higher throughput, lower latency, improved resource utilization, and greater model portability. These benefits contribute to more efficient DL model deployment in modern AI applications.