• Title/Summary/Keyword: efficient throughput

Search Result 709, Processing Time 0.047 seconds

An Efficient Cache Maintenance Scheme for Long Disconnected Mobile Clients (장기간 접속 단절된 이동 클라이언트를 위한 효과적 캐시 유지 기법)

  • Park Kwangjin;Song Moonbae;Kang Sangwon;Hwang Chongsun
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.276-284
    • /
    • 2005
  • In the mobile computing environment, caching data at the client's side is a useful technique for improving the performance. For caching to be effective, the cache contents must be consistent with those stored in the server. That is, unfortunately, difficult to enforce due to the frequent disconnection and mobility of clients. In the literature, the basic approach adopted is for the sever to periodically broadcast invalidation reports(IRs) that contain information about objects that have been updated recently. However IR-based cache maintenance scheme has a main drawback. Any client who has been disconnected longer than w seconds has to discard all cached items even some of them may still be valid. In this paper, we propose two main schemes which can adapt clients' losing IR messages by long disconnection. First, the client sends its disconnection time when connection is re-established, and the server uses this information to decide the size of broadcast window w dynamically. Second, the server maintains IR messages for a given period of time and a client who has been disconnected longer than w seconds can verify its cache consistency individually. Compared to previous IR-based schemes, our schemes can significantly reduce cache missing and uplink request and improve the throughput by reducing response time.

An Efficient Scheduling Method Taking into Account Resource Usage Patterns on Desktop Grids (데스크탑 그리드에서 자원 사용 경향성을 고려한 효율적인 스케줄링 기법)

  • Hyun Ju-Ho;Lee Sung-Gu;Kim Sang-Cheol;Lee Min-Gu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.7
    • /
    • pp.429-439
    • /
    • 2006
  • A desktop grid, which is a computing grid composed of idle computing resources in a large network of desktop computers, is a promising platform for compute-intensive distributed computing applications. However, due to reliability and unpredictability of computing resources, effective scheduling of parallel computing applications on such a platform is a difficult problem. This paper proposes a new scheduling method aimed at reducing the total execution time of a parallel application on a desktop grid. The proposed method is based on utilizing the histories of execution behavior of individual computing nodes in the scheduling algorithm. In order to test out the feasibility of this idea, execution trace data were collected from a set of 40 desktop workstations over a period of seven weeks. Then, based on this data, the execution of several representative parallel applications were simulated using trace-driven simulation. The simulation results showed that the proposed method improves the execution time of the target applications significantly when compared to previous desktop grid scheduling methods. In addition, there were fewer instances of application suspension and failure.

Network Interface Selection Algorithm on Vertical Handoff between 3G Networks and WLANs (3G 네트워크와 무선랜 사이 계층적 핸드오프의 네트워크 인터페이스 선택 알고리즘)

  • Seok Yongho;Choi Nafiung;Choi Yanghee
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.203-214
    • /
    • 2005
  • The integration of 3G networks and WLANs as complementary has been begun to attract much attention in industry as well as academia. This topic is becoming a burning issue, and one of the key questions which it raises is how to support a seamless vertical handoff. This paper introduces a new network interface selection algorithm for energy-efficient vertical handoff in tightly coupled systems capable of supporting seamless handoff. Our proposed scheme, Wise Interface Selection (WISE) switches the active network interface, after taking into consideration the characteristics of the network interface cards and the current level of data traffic, with the cooperation of the mobile terminals and network. Network interface switching operates independently on both the downlink and the uplink for the purpose of energy conservation. We show through simulation that less energy is consumed with WISE than when only a 3G network or WLAN interface is used, resulting in a longer lifetime for the mobile terminals. In the case of TCP connections, additional throughput gain can also be obtained.

The Beacon Frame-Based Node Grouping Algorithm for Improving the Performance between MCT devices in the Home Wireless Network (가정 무선 네트워크 내 MCT 디바이스 간 성능 향상을 위한 Beacon frame 기반 노드 그룹화 알고리즘)

  • Kim, Gyu-Do;Kown, Young-Ho;Rhee, Byung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.787-790
    • /
    • 2015
  • Recently, M2M (Machine to Machine) communication is possible the development of MTC (Machine Type Communication) devices becomes active. MCT devices in the form of home appliances have a low power consumption, low cost, short-range wireless communication in wireless home network. For purpose, MTC devices based on IEEE 802.15.4/Zigbee are composed in the form of cluster-tree topology, which consists of one PAN (Personal Area Network), one or other router and end of nodes. It happens that transmission delay, packet drop, and lacking data resulted from collision originated by a competition for allocating channels among MTC devices that greatly increased. At last performance of entire network can be degradated. This paper proposes that the beacon frame-based grouping algorithm using multiple channels in a MTC devices in the presence of wireless home network interference. The proposed algorithm decreases the transmission delay, dropped packet and throughput is more increase, so the proposal algorithm is more efficient than the IEEE 802.15.4/ Zigbee standard.

  • PDF

Media Access Control Protocol based on Dynamic Time Slot Assignment in Underwater Mobile Ad-hoc Network (동적 타임 슬롯 할당에 기반한 수중 모바일 Ad-hoc 네트워크에서의 매체접근제어 프로토콜)

  • Shin, Seung-Won;Kim, Yung-Pyo;Yun, Nam-Yeol;Park, Soo-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.81-89
    • /
    • 2011
  • Underwater wireless network can be useful in various fields such as underwater environment observation, catastrophe prevention, ocean resources exploration, ocean organism research, and vessel sinking exploration. We need to develop an efficient design for Medium Access Control (MAC) protocol to improve multiple data communication in underwater environment. Aloha protocol is one of the basic and simple protocols, but it has disadvantage such as collision occurs oftenly in communication. If there is collision occured in RF communication, problem can be solved by re-sending the data, but using low frequency in underwater, the re-transmission has difficulties due to slow bit-rate. So, Time Division Multiple Access (TDMA) based MAC protocol is going to be used to avoid collisions, but if there is no data to send in existing TDMA, time slot should not be used. Therefore, this paper proposes dynamic TDMA protocol mechanism with reducing the time slots by sending short "I Have No Data" (IHND) message, if there is no data to transmit. Also, this paper presents mathematic analysis model in relation to data throughput, channel efficiency and verifies performance superiority by comparing the existing TDMA protocols.

Generation of Testability on High Density /Speed ATM MCM and Its Library Build-up using BCB Thin Film Substrate (고속/고집적 ATM Switching MCM 구현을 위한 설계 Library 구축 밀 시험성 확보)

  • 김승곤;지성근;우준환;임성완
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.37-43
    • /
    • 1999
  • Modules of the system that requires large capacity and high-speed information processing are implemented in the form of MCM that allows high-speed data processing, high density circuit integration and widely applied to such fields as ATM, GPS and PCS. Hence we developed the ATM switching module that is consisted of three chips and 2.48 Gbps data throughput, in the form of 10 multi-layer by Cu/Photo-BCB and 491pin PBGA which size is $48 \times 48 \textrm {mm}^2$. hnologies required for the development of the MCM includes extracting parameters for designing the substrate/package through the interconnect characterization to implement the high-speed characteristics, thermal management at the high-density MCM, and the generation of the testability that is one of the most difficult issues for developing the MCM. For the development of the ATM Switching MCM, we extracted signaling delay, via characteristics and crosstalk parameters through the interconnect characterization on the MCM-D. For the thermal management of 15.6 Watt under the high-density structure, we carried out the thermal analysis. formed 1.108 thermal vias through the substrate, and performed heat-proofing processing for the entire package so that it can keep the temperature less than $85^{\circ}C$. Lastly, in order to ensure the testability, we verified the substrate through fine pitch probing and applied the Boundary Scan Test (BST) for verifying the complex packaging/assembling processes, through which we developed an efficient and cost-effective product.

  • PDF

A Fairness Control Scheme in Multicast ATM Switches (멀티캐스트 ATM 스위치에서의 공정성 제어 방법)

  • 손동욱;손유익
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.1
    • /
    • pp.134-142
    • /
    • 2003
  • We present an ATM switch architectures based on the multistage interconnection network(MIN) for the efficient multicast traffic control. Many of these applications require multicast connections as well as point-to-point connections. Muiticast connection in which the same message is delivered from a source to arbitrary number of destinations is fundamental in the areas such as teleconferencing, VOD(video on demand), distributed data processing, etc. In designing the multicast ATM switches to support those services, we should consider the fairness(impartiality) and priority control, in addition to the overflow problem, cell processing with large number of copies, and the blocking problem. In particular, the fairness problem which is to distribute the incoming cells to input ports smoothly is occurred when a cell with the large copy number enters upper input port. In this case, the upper input port sends before the lower input port because of the calculating method of running sum, and therefore cell arrived into lower input port Is delayed to next cycle to be sent and transmission delay time becomes longer. In this paper, we propose the cell splitting and group splitting algorithm, and also the fairness scheme on the basis of the nonblocking characteristics for issuing appropriate copy number depending on the number of Input cell in demand. We evaluate the performance of the proposed schemes in terms of the throughput, cell loss rate and cell delay.

Neighbor Caching for P2P Applications in MUlti-hop Wireless Ad Hoc Networks (멀티 홉 무선 애드혹 네트워크에서 P2P 응용을 위한 이웃 캐싱)

  • 조준호;오승택;김재명;이형호;이준원
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.5
    • /
    • pp.631-640
    • /
    • 2003
  • Because of multi-hop wireless communication, P2P applications in ad hoc networks suffer poor performance. We Propose neighbor caching strategy to overcome this shortcoming and show it is more efficient than self caching that nodes store data in theirs own cache individually. A node can extend its caching storage instantaneously with neighbor caching by borrowing the storage from idle neighbors, so overcome multi-hop wireless communications with data source long distance away from itself. We also present the ranking based prediction that selects the most appropriate neighbor which data can be stored in. The node that uses the ranking based prediction can select the neighbor that has high possibility to keep data for a long time and avoid caching the low ranked data. Therefore the ranking based prediction improves the throughput of neighbor caching. In the simulation results, we observe that neighbor caching has better performance, as large as network size, as long as idle time, and as small as cache size. We also show the ranking based prediction is an adaptive algorithm that adjusts times of data movement into the neighbor, so makes neighbor caching flexible according to the idleness of nodes

Channel Assignment and Routing using Traffic Profiles in Wireless Mesh Networks (무선 메쉬 네트워크에서 트래픽 프로파일을 고려하는 채널 할당 및 라우팅)

  • Park, Sook-Young;Lee, Sang-Kyu
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.374-385
    • /
    • 2010
  • Wireless mesh networks can be deployed for various networks from home networking to last-mile broadband Internet access. Wireless mesh networks are composed of mesh routers and mesh clients. In these networks, static nodes form a multi-hop backbone of a large wireless access network that provides connectivity to end-users' mobile terminals. The network nodes cooperate with each other to relay data traffic to its destinations. In order to increase connectivity and better performance, researchers are getting interested in multi-channel and multi-interface wireless mesh networks. In these networks, non-overlapping multiple frequency channels are used simultaneously to increase the aggregate bandwidth available to end-users. Recently, researches have focused on finding suitable channel assignments for wireless network interfaces, equiped in a mesh node, together with efficient routing to improve overall system throughput in wireless mesh networks. This goal can be achieved by minimize channel interference. Less interference among using channels in a network guarantees more aggregated channel capacity and better connectivity of the networks. In this thesis, we propose interference aware channel assignment and routing algorithms for multi-channel multi-hop wireless mesh networks. We propose Channel Assignment and Routing algorithms using Traffic Profiles(CARTP) and Routing algorithms allowing detour routing(CARTP+2). Finally, we evaluate the performance of proposed algorithms in comparison to results from previous methods using ns-2 simulations. The simulation results show that our proposed algorithms can enhance the overall network performance in wireless mesh networks.

A study on improving fairness and congestion control of DQDB using buffer threshold value (버퍼의 문턱치값을 이용한 DQDB망의 공평성 개선 및 혼잡 제어에 관한 연구)

  • 고성현;조진교
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.618-636
    • /
    • 1997
  • DQDB(Distributed Queue Dual Bus) protocol, the IEEE 802.6 standard protocol for metropolitan area networks, does not fully take advantage of the capabilities of dual bus architecture. Although fairness in bandwidth distribution among nodes is improved when using so called the bandwidth balancing mechanism, the protocol requires a considerable amount of time to adjust to changes in the network load. Additionally, the bandwidth balancing mechanism leaves a portion of the available bandwidth unused. In a high-speed backbone network, each node may act as a bridge/ router which connects several LANs as well as hosts. However, Because the existence of high speed LANs becomes commonplace, the congestionmay occur on a node because of the limitation on access rate to the backbone network and on available buffer spaces. to release the congestion, it is desirable to install some congestion control algorithm in the node. In this paper, we propose an efficient congestion control mechanism and fair and waster-free MAC protocol for dual bus network. In this protocol, all the buffers in the network can be shared in such a way that the transmission rate of each node can be set proportional to its load. In other words, a heavily loaded node obtains a larger bandwidth to send the sements so tht the congestion can be avoided while the uncongested nodes slow down their transmission rate and store the incoming segments into thier buffers. this implies that the buffers on the network can be shared dynamically. Simulation results show that the proposed probotol significantly reduces the segment queueing delay of a heavily loaded node and segment loss rate when compared with original DQDB. And it enables an attractive high throughput in the backbone network. Because in the proposed protocol, each node does not send a requet by the segment but send a request one time in the meaning of having segments, the frequency of sending requests is very low in the proposed protocol. so the proposed protocol signigificantly reduces the segment queuing dely. and In the proposed protocol, each node uses bandwidth in proportion to its load. so In case of limitation of available buffer spaces, the proposed protocol reduces segment loss rate of a heavily loaded node. Bandwidth balancing DQDB requires the wastage of bandwidth to be fair bandwidth allocation. But the proposed DQDB MAC protocol enables fair bandwidth without wasting bandwidth by using bandwidth one after another among active nodes.

  • PDF