• 제목/요약/키워드: efficient throughput

Search Result 709, Processing Time 0.042 seconds

Cross-Layer Analysis of Wireless TCP/ARQ Systems over Correlated Channels

  • Wu Yi;Niu Zhisheng;Zheng Junli
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • In this paper, we present a cross-layer analysis of wireless TCP systems over correlated channels. The effects of error correlation on the behavior of link retransmission strategy and the end-to-end throughput of TCP layer are investigated. Based on the cross-layer analysis, an efficient refinement of link layer protocol is proposed by consciously utilizing the information of channel correlations, which leads to the performance improvement of wireless TCP systems.

A Study on the Lot Sizing and Scheduling in Process Industries (장치 산업에서 로트 크기와 작업 순서 결정을 위한 연구)

  • 이호일;김만식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.19
    • /
    • pp.79-88
    • /
    • 1989
  • This characteristics of process industries are high capital intensity, relatively long and sequence dependent setup times, and extremely limited capacity resources. The lot sizing, sequencing and limited capacity resources factors must he considered for production scheduling in these industries. This paper presents a mixed integer programming model for production scheduling. The economic trade offs between capacitated lot sizing flow shop scheduling and sequence dependent setup times also be compared with SMITH-DANIELS's model. As a results, it is shown that this paper has lower total cost, more efficient throughput than SMITH-DANIELS's model.

  • PDF

Combinatorial Library and Chemogenomics Approach: Discovery of Protein Secondary Structure Mimetic Small Molecule Inhibitors of Tryptase and Ref-l for Asthma

  • Moon, Sung-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.92-92
    • /
    • 2003
  • The drug discovery landscape is changing rapidly in the post-genomic era. Mapping of the human genome has led to an abundance of potential drug targets. Drug discovery times and costs can be significantly reduced by developing methods for high throughput target identification/ validation, multiplexed assay development and high efficient combinatorial chemistry. (omitted)

  • PDF

Heterogeneity-aware Energy-efficient Clustering (HEC) Technique for WSNs

  • Sharma, Sukhwinder;Bansal, Rakesh Kumar;Bansal, Savina
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1866-1888
    • /
    • 2017
  • Efficient energy consumption in WSN is one of the key design issues for improving network stability period. In this paper, we propose a new Heterogeneity-aware Energy-efficient Clustering (HEC) technique which considers two types of heterogeneity - network lifetime and of sensor nodes. Selection of cluster head nodes is done based on the three network lifetime phases: only advanced nodes are allowed to become cluster heads in the initial phase; in the second active phase all nodes are allowed to participate in cluster head selection process with equal probability, and in the last dying out phase, clustering is relaxed by allowing direct transmission. Simulation-based performance analysis of the proposed technique as compared to other relevant techniques shows that HEC achieves longer stable region, improved throughput, and better energy dissipation owing to judicious consumption of additional energy of advanced nodes. On an average, the improvement observed for stability period over LEACH, SEP, FAIR and HEC- with SEP protocols is around 65%, 30%, 15% and 17% respectively. Further, the scalability of proposed technique is tested by varying the field size and number of sensing nodes. The results obtained are found to be quite optimistic. The impact of energy heterogeneity has also been assessed and it is found to improve the stability period though only upto a certain extent.

Efficient routing in multicast mesh by using forwarding nodes and weighted cost function

  • Vyas, Kapila;Khuteta, Ajay;Chaturvedi, Amit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5928-5947
    • /
    • 2019
  • Multicast Mesh based Mobile Ad-hoc NETworks (MANETs) provide efficient data transmission in energy restraint areas without a fixed infrastructure. In this paper, the authors present an improved version of protocol SLIMMER developed by them earlier, and name it SLIMMER-SN. Most mesh-based protocols suffer from redundancy; however, the proposed protocol controls redundancy through the concept of forwarding nodes. The proposed protocol uses remaining energy of a node to decide its energy efficiency. For measuring stability, a new metric called Stability of Node (SN) has been introduced which depends on transmission range, node density and node velocity. For data transfer, a weighted cost function selects the most energy efficient nodes / most stable nodes or a weighted combination of both. This makes the node selection criteria more dynamic. The protocol works in two steps: (1) calculating SN and (2) using SN value in the weighted cost function for selection of nodes. The study compared the proposed protocol, with other mesh-based protocols PUMA and SLIMMER, based on packet delivery ratio (PDR), throughput, end-to-end delay and average energy consumption under different simulation conditions. Results clearly demonstrate that SLIMMER-SN outperformed both PUMA and SLIMMER.

A Study on the Bandwidth Efficient Self-Cancellation Scheme of Interchannel Interference (ICI) For OFDM Transmission Systems

  • Kim, Gi-Rae;Chung, Yeon-Do
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.162-165
    • /
    • 2006
  • This paper presents a bandwidth efficient self-cancellation scheme for interchannel interference (ICI) in OFDM transmission systems. Conventional self-cancellation schemes provide an excellent cancellation capability of ICI for relatively low frequency offsets. However, this capability is achieved at the expense of bandwidth efficiency and thus a higher modulation level is often used to compensate for desired throughput. By applying a partial differential coding (PDC) to the transmit data prior to the ICI self-cancellation, bandwidth efficiency is greatly improved by a factor of 2, while maintaining a string of data (+1, -1) alternately for the ICI. self-cancellation in OFDM systems. Computer simulations show that the performance of the proposed scheme is comparable to the conventional self-cancellation scheme with slight performance degradation for relatively lower frequency offsets.

Throughput Improvement of Adaptive Modulation System with an Efficient Turbo-Coded V-BLAST Technique in each MIMO Channel

  • Ryoo, Sang-Jin;Kim, Seo-Gyun;Na, Cheol-Hun;Hong, Jin-Woo;Hwang, In-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.905-908
    • /
    • 2008
  • In this paper, an Adaptive Modulation (AM) system with an efficient turbo-coded Vertical-Bell-lab Layered Space-Time (V-BLAST) technique is proposed. The proposed decoding algorithm adopts iteratively the extrinsic information from a Maximum a Posteriori (MAP) decoder as a priori probability in the two decoding procedures of the V-BLAST scheme of ordering and slicing. In this analysis, each MIMO channel is assumed to be a part of the system of performance improvement.

  • PDF

An Efficient Cell Scheduling Scheme for GFR Service in ATM Networks (ATM 망에서 GFR 서비스를 위한 효율적인 셀 스케쥴링 기법)

  • 곽현민;김남희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.9C
    • /
    • pp.853-860
    • /
    • 2002
  • In this paper, we proposed a new buffer management and cell scheduling scheme for GFR service in ATM networks. The proposed scheme is able to satisfy fairness criteria and efficient cell service in GFR. Performance analysis through the simulation presents that the proposed scheme can meet fairness 2(MCR plus equal share), which are not met by conventional scheduling mechanisms such as WRR. Also, the proposed scheme is superior to WRR about 29% in throughput and more efficency in fairness criteria.

Energy-Efficient Base Station Operation in Heterogeneous Cellular Networks

  • Nguyen, Hoang-Hiep;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1456-1463
    • /
    • 2012
  • In this paper, we study the ON/OFF control policy of base stations in two-tier heterogeneous cellular networks to minimize the total power consumption of the system. Using heterogeneous cellular networks is a potential approach of providing higher throughput and coverage compared to conventional networks with only macrocell deployment, but in fact heterogeneous cellular networks often operates regardless of total power consumption, which is a very important issue of modern cellular networks. We propose a policy that controls the activation/deactivation of base stations in heterogeneous cellular networks to minimize total power consumption. Under this policy, the total power consumed can be significantly reduced when the traffic is low while the QoS requirement is satisfied.

Practical Schemes for Tunable Secure Network Coding

  • Liu, Guangjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1193-1209
    • /
    • 2015
  • Network coding is promising to maximize network throughput and improve the resilience to random network failures in various networking systems. In this paper, the problem of providing efficient confidentiality for practical network coding system against a global eavesdropper (with full eavesdropping capabilities to the network) is considered. By exploiting a novel combination between the construction technique of systematic Maximum Distance Separable (MDS) erasure coding and traditional cryptographic approach, two efficient schemes are proposed that can achieve the maximum possible rate and minimum encryption overhead respectively on top of any communication network or underlying linear network code. Every generation is first subjected to an encoding by a particular matrix generated by two (or three) Vandermonde matrices, and then parts of coded vectors (or secret symbols) are encrypted before transmitting. The proposed schemes are characterized by tunable and measurable degrees of security and also shown to be of low overhead in computation and bandwidth.