• Title/Summary/Keyword: efficient irrigation

Search Result 115, Processing Time 0.026 seconds

Operation Strategy of Groundwater Dam Using Estimation Technique of Groundwater Level (지하수위 예측기법을 활용한 지하댐 운영전략)

  • Bu, Seong-An;Sin, Sang-Mun;Choe, Yong-Seon;Park, Jae-Hyeon;Jeong, Gyo-Cheol;Park, Chang-Geun
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.236-245
    • /
    • 2006
  • Among a number of methodologies for developing groundwater supply to overcome drought events reported in the research community, an accurate estimation of the groundwater level is an important initial issue to provide an efficient method for operating groundwater. The primary objective of this paper is to develop an advanced prediction model for the groundwater level in the catchment area of the Ssangcheon groundwater dam using precipitation based period dividing algorithm and response surface methodology (RSM). A numerical example clearly shows that the proposed method can effectively forecast groundwater level in terms of correlation coefficient ($R^2$) in the upstream part of the Ssangcheon groundwater dam.

  • PDF

A Study on the Water Resources Assessment for Irrigation Scheme in Malawi

  • AHN, SungSick;Kim, Jin-Hong
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.178-186
    • /
    • 2018
  • Generally, in terms of the development of irrigation scheme, the efficient water resource management that supplies the irrigation water in consideration of the required time and accurate quantity to grow the crop should be conducted. The water resource assessment should precede to supply the irrigation water efficiently. The water resources assessment is divided into the water requirement analysis and the water availability assessment. In case of Korea, the major crop is paddy rice unlike crops of Africa, such as sugarcane, maize, and cassava, etc. Because it is not familiar with the method for upland irrigation development in tropical area, it needs to know the water resources assessment for irrigation scheme development about these crops. The Natama Scheme in Chiradzulu District of the Southern Malawi was selected as study area, which has tropical climate. From the collected meteorological data, the evapotranspiration was analyzed by Penman-Monteith Method and the effective rainfall was analyzed by USDA Soil Conservation Service Method. This study displays the results that for study area, the evapotranspiration varies from 2.80 mm/day to 5.51 mm/day and the effective rainfall varied from 2.1mm to 149.0mm. According to the selected crop (Green Maize, Dry Maize), the unit water requirement (UWR) and water demand (WD) considering the irrigation efficiency, irrigation time and irrigation area were estimated to be $0.00122m^3/s/ha$ and $0.0122m^3/s$ respectively. For the water availability assessment, the runoff of Natama scheme was calculated by specific yield method. The water availability was evaluated through reviewed differences of discharge between $Q80_{intake}$ and Total WD, and the irrigation water can be supplied sufficiently in the existing 10ha of Natama scheme. As a result of reviewing the extensibility of irrigable area, total WD of scheme is $0.02313m^3/s$, and $Q80_{intake}$ is $0.02387m^3/s$ ($Q80_{intake}$ > Total WD). Therefore, Natama scheme can be extended from 10 ha to 17 ha in the dry season in consideration of the $Q80_{intake}$.

Construction and basic performance test of an ICT-based irrigation monitoring system for rice cultivation in UAE desert soil

  • Mohammod, Ali;Md Nasim, Reza;Shafik, Kiraga;Md Nafiul, Islam;Milon, Chowdhury;Jae-Hyeok, Jeong;Sun-Ok, Chung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.703-718
    • /
    • 2021
  • An irrigation monitoring system is an efficient approach to save water and to provide effective irrigation scheduling for rice cultivation in desert soils. This research aimed to design, fabricate, and evaluate the basic performance of an irrigation monitoring system based on information and communication technology (ICT) for rice cultivation under drip and micro-sprinkler irrigation in desert soils using a Raspberry Pi. A data acquisition system was installed and tested inside a rice cultivating net house at the United Arab Emirates University, Al-Foah, Al-Ain. The Raspberry Pi operating system was used to control the irrigation and to monitor the soil water content, ambient temperature, humidity, and light intensity inside the net house. Soil water content sensors were placed in the desert soil at depths of 10, 20, 30, 40, and 50 cm. A sensor-based automatic irrigation logic circuit was used to control the actuators and to manage the crop irrigation operations depending on the soil water content requirements. A developed webserver was used to store the sensor data and update the actuator status by communicating via the Pi-embedded Wi-Fi network. The maximum and minimum average soil water contents, ambient temperatures, humidity levels, and light intensity values were monitored as 33.91 ± 2 to 26.95 ± 1%, 45 ± 3 to 24 ± 3℃, 58 ± 2 to 50 ± 4%, and 7160-90 lx, respectively, during the experimental period. The ICT-based monitoring system ensured precise irrigation scheduling and better performance to provide an adequate water supply and information about the ambient environment.

Development of Integrated Design System for Agricultural Facilities (수리시설물 통합설계시스템의 구현)

  • Bae, Yeun-Jung;Lee, Jeong-Jae;Yoon, Seong-Soo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.75-84
    • /
    • 2002
  • The irrigation facilities are managed systematically and a facility is independent at the view of shape and function. The design of the irrigation facility is the formulated process with independent objectives. So its process is accordance to object-oriented concept. The design of irrigation facilities is classified into several steps. In these steps, the design data is made and the various problems are solved and consolidated with analysis and decision. In order to achieve our goal of constructing an efficient integrated design system, the results from the design should be able to be systematically connected and re-used. In the study, the design task of irrigation facility, the integrated design system for (IDSAF) is to be developed using the object-oriented methods, and then its applicability will be examined.

Development of Extraction Technique for Irrigated Area and Canal Network Using High Resolution Images (고해상도 영상을 이용한 농업용수 수혜면적 및 용배수로 추출 기법 개발)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Jeon, Min-Gi;Lee, Sang-Il;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.23-32
    • /
    • 2021
  • For agricultural water management, it is essential to establish the digital infrastructure data such as agricultural watershed, irrigated area and canal network in rural areas. Approximately 70,000 irrigation facilities in agricultural watershed, including reservoirs, pumping and draining stations, weirs, and tube wells have been installed in South Korea to enable the efficient management of agricultural water. The total length of irrigation and drainage canal network, important components of agricultural water supply, is 184,000 km. Major problem faced by irrigation facilities management is that these facilities are spread over an irrigated area at a low density and are difficult to access. In addition, the management of irrigation facilities suffers from missing or errors of spatial information and acquisition of limited range of data through direct survey. Therefore, it is necessary to establish and redefine accurate identification of irrigated areas and canal network using up-to-date high resolution images. In this study, previous existing data such as RIMS (Rural Infrastructure Management System), smart farm map, and land cover map were used to redefine irrigated area and canal network based on appropriate image data using satellite imagery, aerial imagery, and drone imagery. The results of the building the digital infrastructure in rural areas are expected to be utilized for efficient water allocation and planning, such as identifying areas of water shortage and monitoring spatiotemporal distribution of water supply by irrigated areas and irrigation canal network.

A study on Improvement of Automatic Water Management System in Uiryeong Watershed Area (의령수역의 자동화 물관리 시스템 운영개선연구)

  • Cho, Young-Jea;Lee, Moung-Jun;Kim, Young-Ho;Park, Sang-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.213-214
    • /
    • 2005
  • Uiryung Watershed area, located at the confluence of Nam River and Nagdong River has 9000 ha of agricultural land area and 3024 ha of paddy rice field have been reclaimed and managed by Korean Agricultural and Rural Infrastructure Corporation(KARICO) in the riparian area since 1954. In spite of irrigation and drainage improvement projects in last 3 decades since 1970, there are severe drought and innundation problems in the area. To improve the difficulties and efficient usage of irrigation water not only for agriculture but also for environmental conservation and cultural ceremony, Automatic Water management system has been installed supported by Ministry of Agriculture and Fishery in Korean Government. The control office in Uiryung Branch Office of KARICO, receive all the water management records from Remote Terminal Units in 7 reservoirs and 26 Pump stations to operate the decision supporting system of irrigation and drainage facility during cropping period. Since the completion of the water management system at the end of 2003, the electric cost decrease in 80 % than average years. In spite of decrease of two technical assistants since 2004, complains from farmers for the water management are very rare. The technological experience from the automatic water management system would contribute not only for the efficient water management of Uiryang area but also for the modernization of water management of other watershed areas in the future.

  • PDF

Analysis of Operating and Maintenance Parameters for Agricultural Pipeline System Using EPANET (EPANET을 이용한 농업용 관수로 시스템의 운영 및 유지관리 인자 분석)

  • Kim, Nam Do;Kim, Sun Joo;Kwon, Hyung Joong;Kim, Phil Shik;Park, Hyun Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.17-26
    • /
    • 2017
  • In this study, EPANET model which is using on the pipe network analysis was applied to Haenam irrigation district has provided irrigation water by pipeline system about 1,125ha and then have built pipe network to study area and supply performance evaluation of existing structure was analyzed by SPA (Single Period Analysis) in EPANET. As model results of simulation average ratio of maximum supply quantity/irrigation water requirements(base demand) was analyzed by 2.63. It means also that was analyzed as being capable of ensuring the water supply capacity. It was provided the necessary information for the maintenance facility through analyzed hydraulic behaviors in the pipeline inside such as flow velocities, pressures and hydraulic grade lines. It was satisfied with the allowable design criteria that was compared analyzed results with presented allowable design standards at agricultural production infra improvement project planning and design (Pipeline design standard). In order to analyze efficiency promotions of irrigation water, using Extended Period Simulation it was compared supply quantity with irrigation water requirements while pumps set operating pattern in 24 hours, then efficiency promotions of irrigation water was determined through analyzed oversupply water quantity and occurrence time by branch lines. According to results for oversupply quantity in Haenam district by time and end of branch lines efficiency promotions of irrigation water was suggested from 0.33 % to 37.59 %. To draw reasonable operating rules for water use and through this research, it is expected to be helpful for efficient water use and operational management of agricultural pipeline system to the current agricultural irrigation.

A Practical Study of Unified Management System for Irrigation and Drainage Facilities (수리시설물 통합관리시스템 실용화 연구)

  • 김선주;박성삼
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.42-53
    • /
    • 1998
  • About 50 percent of irrigation and drainage facilities in our country are deteriorated as they were constructed over 40 years ago. Worsening the problems in function might be caused by these facilities' constant exposure to the elements. With these reason, efficient maintenance and management of irrigation and drainage facili- ties are required. A computerized system is tailored on the basis of the each characteristics'data of irrigation and drainage facilities. The unified management system to be introduced in this study is a package program consisting of three subprograms. Facility Management(FM) system, the first component, is a relational database system for image processing and registering the characteristics of irrigation and drainage facilities. The objective of this program is to manage the ledger of each facilities and to scan the characteristics of facilities. Telemeter(TM) system, the second component, monitors and processes the data from the sensors statistically. This system is preprogramed for the complete design of TC/TM system. Hydrological Data Management(HDM) system, the third component, executes the hydrological analysis using meteorological data. The unified management system can provide the latest information, such as image data, lists and items of facilities, and items of reforming and rebuilding etc., of the facilities to the manager. At the same time, this system can manage hydrological and meteorological data in realtime.

  • PDF

A COMPARATIVE STUDY OF THE EFFECT K - FILE AND ULTRASONIC INSTRUMENT IN CLEANING AND SHAPING ROOT CANAL (K-File과 초음파기구의 근관확대 및 세척효과에 대한 비교연구)

  • Kim, Sang-Seop;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.413-420
    • /
    • 1992
  • The purpose of this study was to compare the effectiveness of hand instrumentation with K - file and ultrasonic instrumentation and irrigation system in removing pulpal debris and canal wall planing. 20 mandibular molar teeth were instrumented to size 30 K - file and 20 teeth were instrumented with ultrasonic Suprasson. And Normal Saline and 2.5% NaOCl were used as irrigation solution. All specimens were viewed at the coronal, middle, and apical third of the root canals for the evaluation of the cleaning effect under the multiview microscope. The result were as follows : 1. All of the technique and irrigation solution was effecient in the debris removal and canal wall planing at the cervical and middle thirds of the root canal. 2. All of the techniques and irrigation solutions was less efficient in the debris removal and canal planing at the apical third of the root canal. 3. The debris removal and canal wall planing was depended more on the anatomical variations of the root canal than on the techniques and irrigation solutions.

  • PDF

Analysis of Irrigation Water Amount Variability based on Crops and Soil Physical Properties Using the IWMM Model (IWMM 모형을 이용한 작물과 토양의 물리적 특성에 따른 관개용수량 변동 특성 분석)

  • Shin, Yongchu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, we analyzed the variability of irrigation water amounts based on the combination of various crops and soil textures using the Irrigation Water Management Model (IWMM). IWMM evaluates the degree of agricultural drought using the Soil Moisture Deficit Index (SMDI). When crops are damaged by the water scarcity under the drought condition indicating that the SMDI values are in negative (SMDI<0), IWMM irrigates appropriate water amounts that can shift the negative SMDI values to "0" to crop fields. To test the IWMM model, we selected the Bandong-ri (BDR) and Jucheon (JC) sites in Gangwon-do and Jeollabuk-do provinces. We derived the soil hydraulic properties using the near-surface data assimilation scheme form the Time Domain Reflectrometry (TDR)-based soil moisture measurements. The daily root zone soil moisture dynamics (R: 0.792/0.588 and RMSE: 0.013/0.018 for BDR/JC) estimated by the derived soil parameters were matched well with the TDR-based measurements for validation. During the long-term (2001~2015) period, IWMM irrigated the minimum water amounts to crop fields, while there were no irrigation events during the rainy days. Also, Sandy Loam (SL) and Silt (Si) soils require more irrigation water amounts than others, while the irrigation water were higher in the order of radish, wheat, soybean, and potato, respectively. Thus, the IWMM model can provide efficient irrigation water amounts to crop fields and be useful for regions at where limited water resources are available.