• Title/Summary/Keyword: efficiency parameter

Search Result 1,348, Processing Time 0.028 seconds

A Study of the PV System for Optimum Design Methods With Loss Parameter Compensation

  • Lee, Kang-Yeon;Choi, Moon-Han;Choi, Youn-Ok;Joeng, Byeong-Ho;Cho, Geum-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.64-75
    • /
    • 2007
  • Photovoltaic systems utilize the infinite clean energy of the sun, without creating any air pollution or noise and mechanical vibration. A PV system operates without the need of fuel, rotation surfaces, high temperatures or high pressures. It is therefore to do maintain and simple to install as well as having a long life cycle. The global market for PV systems continues to grow rapidly by 30[%] per year. This paper suggests a new design method for the PV system installation that will allow to the improvement of system efficiency. This method is in accordance with the loss parameter compensation method designed for the PV systems and investigated through simulation and practical experimentation. It was applied to an interconnected 10[kW] grid PV system and was demonstrated in the field. Features such as solar array, PCS, system efficiency, performance and stability were considered. Through the proposed optimal parameter design method, the features of the system were studied, and the 10[kW] PV system was demonstrated and analyzed.

Parameter Optimization of a Micro-Static Mixer Using Successive Response Surface Method (순차적 반응표면법을 이용한 마이크로 정적 믹서의 최적설계)

  • Han, Seog-Young;Maeng, Joo-Sung;Kim, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1314-1319
    • /
    • 2004
  • In this study, parameter optimization of micro-static mixer with a cantilever beam was accomplished for maximizing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

A Study on the Design Parameters of the PSC I-Type Girders for Long Span Bridges (장지간 교량을 위한 PSC-I형 거더의 단면 설계변수 연구)

  • 심종성;오홍섭;김민수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.13-22
    • /
    • 2000
  • In order to resolve the problem of increasing traffic entailed by the economic development, road system is reorganization and new highways are built, and long span bridges over 40m are being constructed in environmental and aesthetic considerations. Most long span bridges that are currently being constructed are in general steel box girder and preflex girder bridges; however these types of breiges are less efficiency than PSC I-type girder bridges in terms of construction cost and maintenance. Therefore, in these study, structural efficiency of PSC I-type girders based on section parameters, concrete compressive strength and other design parameter is observed to develope new PSC I-type girder for long span bridges. As a results of analysis, most important design parameters that control the stress of the girder are found to be the top flange width and the height of girder. In this light, the relationship between the two variables is determined and cross-section details of the girder that most appropriates for the long span bridges are proposed. The use of high strength concrete appears to increase the general design span however the increase rate of the span from increasing concrete ultimate strength appears to be reduced depending on the span. Also, the optimal girder spacing is determined through the parameter studies of design span using the proposed girder.

A Study on Domestic Standard Parameter Setting for BIM-based Energy Performance Evaluation - Focused on Possession Area per Person of Occupants in Government Offices - (BIM 기반 에너지성능평가를 위한 국내 표준 매개변수 설정 방안에 대한 연구 - 공공청사 업무시설의 재실자 1인당 점유면적을 중심으로 -)

  • Lee, Yun-Jeong;Lee, Kweon-Hyoung;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • Currently, the United States, the United Kingdom, Australia etc. are actively utilizing energy simulation for efficiency evaluation of building energy. However, domestic energy efficiency assessment system doesn't use energy simulation system properly at present: parameters based architecture plans and Ashrae Standard are inputted for the evaluation, because the input parameters for the simulation haven't been established yet. This fact causes poor reliability during energy simulation, as the values of the two standards are different from each other. Therefore, the aim of the study is to set domestic standard parameter for BIM-based energy performance evaluation, focusing on possession area per person of occupants at government office in Korea. We found that the difference among the result values occurred approximately 3% in the energy simulation. As a result of the analysis, possession area per person of occupants in Government office is $31.87m^2$. Other input parameters may be set based on this. This will increase the reliability of energy simulation through a domestic standard parameter.

A parameter sweep approach for first-cut design of 5 MW Ship propulsion motor

  • Bong, Uijong;An, Soobin;Im, Chaemin;Kim, Jaemin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents a conceptual design approach of air-cored synchronous machine with high temperature superconductor (HTS) field winding. With a given configuration of a target machine, boundary conditions are set in the cylindrical coordinate system and analytic field calculation is performed by solving a governing equation. To set proper boundary conditions, current distributions of the field winding and the armature winding are expressed by the Fourier expansion. Based on analytic magnetic field calculation results, key machine parameters are calculated: 1) inductance, 2) critical current of field winding, 3) weight, 4) HTS conductor consumption, and 5) efficiency. To investigate all potential design options, 6 sweeping parameters are determined to characterize the geometry of the machine and the parameter calculation process is performed for each design options. Among design options satisfying constraints including >80 % critical current margin and >95 % efficiency, in this paper, a first-cut design was selected in terms of overall machine weight and HTS conductor consumption to obtain a lightweight and economical design. The goal is to design a 5-MW machine by referring to the same capacity machine that was previously constructed by another group. Our design output is compared with finite element method (FEM) simulation to validate our design approach.

Hybrid navigation parameter estimation from aerial image sequence (항공영상을 이용한 하이브리드 영상 항법 변수 추출)

  • 심동규;정상용;이도형;박래홍;김린철;이상욱
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.146-156
    • /
    • 1998
  • Thispapr proposes hybrid navigation parameter estimation using sequential aerial images. The proposed navigation parameter estimation system is composed of two parts: relative position estimation and absolute position estimation. the relative position estimation recursively computes the current velocity and absolute position estimation. The relative position estimation recursively computes the current velocity and position of an aircraft by accumulating navigation parameters extracted from two succesive aerial images. Simple accumulation of parameter values decreases reliability of the extracted parameters as an aircraft goes on navigating. therefore absolute position estimation is required to compensate for position error generated in the relative position step. The absolute position estimation algorithm combining image matching and digital elevation model(DEM) matching is presented. Computer simulation with real aerial image sequences shows the efficiency of the proposed hybrial algorithm.

  • PDF

Generalized beam-column finite element on two-parameter elastic foundation

  • Morfidis, K.;Avramidis, I.E.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.519-537
    • /
    • 2005
  • A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic foundation is presented herein. This element is based on the exact solution of the differential equation which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation, and can take into account shear deformations, semi - rigid connections, and rigid offsets. The equations of equilibrium are formulated for the deformed configuration, so as to account for axial force effects. Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel structures analysis is demonstrated by two examples.

Online Compensation of Parameter Variation Effects for Robust Interior PM Synchronous Motor Drives

  • Shrestha, Rajendra L.;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.713-718
    • /
    • 2011
  • This paper presents an online voltage disturbance estimator to achieve precise torque control of IPMSMs over a high speed operating region. The proposed design has a type of state-filter based on a Luenburger-style closed loop stator current vector observer. Utilizing the frequency response plot (FRF) approach, the estimation accuracy and the parameter sensitivities are analyzed. Accurate torque control and improved efficiency are provided with the decoupling of the effect of the parameter variations. The feasibility of the presented idea is verified by laboratory experiments.

Parameter Estimation Method of Low-Frequency Oscillating Signals Using Discrete Fourier Transforms

  • Choi, Joon-Ho;Shim, Kwan-Shik;Nam, Hae-Kon;Lim, Young-Chul;Nam, Soon-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.163-170
    • /
    • 2012
  • This paper presents a DFT (Discrete Fourier Transform) based estimation algorithm for the parameters of a low-frequency oscillating signal. The proposed method estimates the parameters, i.e., the frequency, the damping factor, the mode amplitude, and the phase, by fitting a discrete Fourier spectrum with an exponentially damped cosine function. Parameter estimation algorithms that consider the spectrum leakage of the discrete Fourier spectrum are introduced. The multi-domain mode test functions are tested in order to verify the accuracy and efficiency of the proposed method. The results show that the proposed algorithms are highly applicable to the practical computation of low-frequency parameter estimations based on DFTs.